NumPy 如何生成多维数组的方法


Posted in Python onFebruary 05, 2018

Python现在是最热门的人工智能语言,各种工具的支持如Google的Tensorflow,都是首选支持Python的。

但是,与R语言不同,Python语言设计时,并没有考虑对于矩阵运算,统计计算等功能做专项支持。于是我们需要NumPy库来补足这一能力上的不足。

NumPy是Python的著名扩展库,相当于Python中的MATLAB。

Numpy 中,ndarray 类具有六个参数,它们分别为:

  1. shape:数组的形状。
  2. dtype:数据类型。
  3. buffer:对象暴露缓冲区接口。
  4. offset:数组数据的偏移量。
  5. strides:数据步长。
  6. order:{'C','F'},以行或列为主排列顺序。

如何生成多维数组

初识ndarray多维数组

在算法中我们最经常用到的就是矩阵,我们就从矩阵开始说起吧。
NumPy中,使用二维的多维数组ndarray来存储矩阵。

例:

a3 = np.array([[1,0],[0,1]])

会生成这样一个多维数组对象

array([[1, 0],
  [0, 1]])

生成数组序列

通过开始值、结束值和步长值生成数组序列 - arange

可以通过arange函数来生成指定开始值,结束值和步长值的一维数组。请注意,结束值并不包含在序列中,也就是说结束值是开区间。

In [25]: a4 = np.arange(1,10,1)

In [26]: a4
Out[26]: array([1, 2, 3, 4, 5, 6, 7, 8, 9])

线性序列 - linspace

与arange类似,linspace通过给定初值、终值和元素个数来生成序列。是否包含终值可以通过endpoint属性来设置。

例:

In [37]: a8 = np.linspace(1,10,10,endpoint=True)

In [38]: a8
Out[38]: array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])

等比序列 - logspace

除了线性的等差数列,我们也可以通过等比数列的方式来生成一维数组。

默认是以10的n次方为参数,比如logspace(0,4,3)的意思是,初值为10的0次方,即1,终值是10的4次方,即100,一共生成3个值。

例,生成[1,100,10000]

In [47]: a9 = np.logspace(0,4,3)

In [48]: a9
Out[48]: array([ 1.00000000e+00, 1.00000000e+02, 1.00000000e+04])

我们当然也可以修改基数,比如改成3:

In [53]: a10 = np.logspace(1,5,3,base=3)

In [54]: a10
Out[54]: array([ 3., 27., 243.])

改变多维数组的形状

如果有一个一维数组要转为多维数组,可以通过修改shape属性来实现。

我们可以先将数据存在一维数组中,可以用列表或者元组来生成一维数组,它们是等价的:

例:

In [2]: a1 = np.array([1,2,3,4])

In [3]: a1
Out[3]: array([1, 2, 3, 4])

In [4]: a2 = np.array((1,0,0,1))

In [5]: a2
Out[5]: array([1, 0, 0, 1])

我们通过shape属性来查看一个数组的形状:

In [14]: a1.shape
Out[14]: (4,)

In [15]: a2.shape
Out[15]: (4,)

shape属性是可以直接修改的,比如我们想把上面的a1改成2 x 2的矩阵,就直接改shape值就是了:

In [16]: a1.shape = 2,2

In [17]: a1
Out[17]: 
array([[1, 2],
  [3, 4]])

如果能确定一个轴,另一个可以赋-1让系统自己去算。

例:

In [18]: a2.shape= 2,-1

In [19]: a2
Out[19]: 
array([[1, 0],
  [0, 1]])

如果想保持这个数组不变,生成一个形状改变的新数组,可以调用reshape方法。

例:我们将一个25个元素的数组生成一个5x5的新数组

In [59]: a11 = np.linspace(1,100,25)

In [60]: a11
Out[60]: 
array([ 1. , 5.125, 9.25 , 13.375, 17.5 , 21.625,
   25.75 , 29.875, 34. , 38.125, 42.25 , 46.375,
   50.5 , 54.625, 58.75 , 62.875, 67. , 71.125,
   75.25 , 79.375, 83.5 , 87.625, 91.75 , 95.875, 100. ])

In [61]: a12 = a11.reshape(5,-1)

In [62]: a12
Out[62]: 
array([[ 1. , 5.125, 9.25 , 13.375, 17.5 ],
  [ 21.625, 25.75 , 29.875, 34. , 38.125],
  [ 42.25 , 46.375, 50.5 , 54.625, 58.75 ],
  [ 62.875, 67. , 71.125, 75.25 , 79.375],
  [ 83.5 , 87.625, 91.75 , 95.875, 100. ]])

直接生成多维数组

生成全0的数组

zeros生成全是0的数组,第一个参数是shape

例:

In [65]: np.zeros((10,10))
Out[65]: 
array([[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
  [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
  [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
  [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
  [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
  [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
  [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
  [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
  [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
  [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])

生成全是1的数组

例:

In [66]: np.ones((5,5))
Out[66]: 
array([[ 1., 1., 1., 1., 1.],
  [ 1., 1., 1., 1., 1.],
  [ 1., 1., 1., 1., 1.],
  [ 1., 1., 1., 1., 1.],
  [ 1., 1., 1., 1., 1.]])

只生成空数组

empty不赋初值,是最快速的方法

例:

In [67]: np.empty((3,3))
Out[67]: 
array([[ 1. , 2.125, 3.25 ],
  [ 4.375, 5.5 , 6.625],
  [ 7.75 , 8.875, 10. ]])

通过函数来生成数组

通过fromfunction函数可以通过一个函数来生成想要的数组。

例,生成九九乘法表:

In [125]: def mul2(x,y):
  ...:  return (x+1)*(y+1)
  ...: 

In [126]: np.fromfunction(mul2,(9,9))
Out[126]: 
array([[ 1., 2., 3., 4., 5., 6., 7., 8., 9.],
  [ 2., 4., 6., 8., 10., 12., 14., 16., 18.],
  [ 3., 6., 9., 12., 15., 18., 21., 24., 27.],
  [ 4., 8., 12., 16., 20., 24., 28., 32., 36.],
  [ 5., 10., 15., 20., 25., 30., 35., 40., 45.],
  [ 6., 12., 18., 24., 30., 36., 42., 48., 54.],
  [ 7., 14., 21., 28., 35., 42., 49., 56., 63.],
  [ 8., 16., 24., 32., 40., 48., 56., 64., 72.],
  [ 9., 18., 27., 36., 45., 54., 63., 72., 81.]])

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python加pyGame实现的简单拼图游戏实例
May 15 Python
Python递归遍历列表及输出的实现方法
May 19 Python
Python实现统计单词出现的个数
May 28 Python
Python使用filetype精确判断文件类型
Jul 02 Python
基于python内置函数与匿名函数详解
Jan 09 Python
对python程序内存泄漏调试的记录
Jun 11 Python
Pycharm无法使用已经安装Selenium的解决方法
Oct 13 Python
介绍一款python类型检查工具pyright(推荐)
Jul 03 Python
Python Django框架防御CSRF攻击的方法分析
Oct 18 Python
python操作cfg配置文件方式
Dec 22 Python
Python爬取微信小程序Charles实现过程图解
Sep 29 Python
python中用Scrapy实现定时爬虫的实例讲解
Jan 18 Python
python生成器,可迭代对象,迭代器区别和联系
Feb 04 #Python
python实现mysql的读写分离及负载均衡
Feb 04 #Python
python负载均衡的简单实现方法
Feb 04 #Python
python爬虫爬取某站上海租房图片
Feb 04 #Python
Python爬虫实现百度图片自动下载
Feb 04 #Python
Python中的defaultdict与__missing__()使用介绍
Feb 03 #Python
Python网络爬虫神器PyQuery的基本使用教程
Feb 03 #Python
You might like
PHP怎样调用MSSQL的存储过程
2006/10/09 PHP
几个学习PHP的网址
2006/11/25 PHP
PHP FTP操作类代码( 上传、拷贝、移动、删除文件/创建目录)
2014/05/10 PHP
Yii实现文章列表置顶功能示例
2016/10/18 PHP
遨游,飞飞,IE,空中网 浏览器无提示关闭方法
2011/07/11 Javascript
js自执行函数的几种不同写法的比较
2012/08/16 Javascript
js获取通过ajax返回的map型的JSONArray的方法
2014/01/09 Javascript
jquery ajax跨域解决方法(json方式)
2014/02/04 Javascript
深入理解JavaScript系列(41):设计模式之模板方法详解
2015/03/04 Javascript
JS短信验证码倒计时功能的实现(没有验证码,只有倒计时)
2016/10/27 Javascript
Vue中的v-cloak使用解读
2017/03/27 Javascript
JS操作时间 - UNIX时间戳的简单介绍(必看篇)
2017/08/16 Javascript
Vue0.1的过滤代码如何添加到Vue2.0直接使用
2017/08/23 Javascript
Node.js+jade抓取博客所有文章生成静态html文件的实例
2017/09/19 Javascript
vue中简单弹框dialog的实现方法
2018/02/26 Javascript
JS实现checkbox互斥(单选)功能示例
2019/05/04 Javascript
7个好用的JavaScript技巧分享(译)
2019/05/07 Javascript
点球小游戏python脚本
2018/05/22 Python
通过Py2exe将自己的python程序打包成.exe/.app的方法
2018/05/26 Python
对numpy数据写入文件的方法讲解
2018/07/09 Python
python交互界面的退出方法
2019/02/16 Python
Python实现使用request模块下载图片demo示例
2019/05/24 Python
Python编程实现tail-n查看日志文件的方法
2019/07/08 Python
python实现高斯(Gauss)迭代法的例子
2019/11/20 Python
Pytorch Tensor基本数学运算详解
2019/12/30 Python
python构造函数init实例方法解析
2020/01/19 Python
Python线程协作threading.Condition实现过程解析
2020/03/12 Python
Python接收手机短信的代码整理
2020/08/02 Python
详解Python中@staticmethod和@classmethod区别及使用示例代码
2020/12/14 Python
CSS3简单实现照片墙
2014/12/12 HTML / CSS
电子商务专业个人的自我评价
2013/11/19 职场文书
大学生精神文明先进个人事迹材料
2014/05/02 职场文书
社区两委对照检查材料
2014/08/23 职场文书
护士求职简历自我评价
2015/03/10 职场文书
实例讲解Python中sys.argv[]的用法
2021/06/03 Python
Oracle11g R2 安装教程完整版
2021/06/04 Oracle