Python中支持向量机SVM的使用方法详解


Posted in Python onDecember 26, 2017

除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类。因为Python中的sklearn库也集成了SVM算法,本文的运行环境是Pycharm。

一、导入sklearn算法包

Scikit-Learn库已经实现了所有基本机器学习的算法,具体使用详见官方文档说明

skleran中集成了许多算法,其导入包的方式如下所示,

逻辑回归:from sklearn.linear_model import LogisticRegression

       朴素贝叶斯:from sklearn.naive_bayes import GaussianNB

 

K-近邻:from sklearn.neighbors import KNeighborsClassifier

 

决策树:from sklearn.tree import DecisionTreeClassifier

 

支持向量机:from sklearn import svm

 二、sklearn中svc的使用

(1)使用numpy中的loadtxt读入数据文件

loadtxt()的使用方法:

Python中支持向量机SVM的使用方法详解

fname:文件路径。eg:C:/Dataset/iris.txt。

dtype:数据类型。eg:float、str等。

delimiter:分隔符。eg:‘,'。

converters:将数据列与转换函数进行映射的字典。eg:{1:fun},含义是将第2列对应转换函数进行转换。

usecols:选取数据的列。

以Iris兰花数据集为例子:

由于从UCI数据库中下载的Iris原始数据集的样子是这样的,前四列为特征列,第五列为类别列,分别有三种类别Iris-setosa, Iris-versicolor, Iris-virginica。

 

Python中支持向量机SVM的使用方法详解

当使用numpy中的loadtxt函数导入该数据集时,假设数据类型dtype为浮点型,但是很明显第五列的数据类型并不是浮点型。

因此我们要额外做一个工作,即通过loadtxt()函数中的converters参数将第五列通过转换函数映射成浮点类型的数据。

首先,我们要写出一个转换函数:

def iris_type(s):
 it = {'Iris-setosa': 0, 'Iris-versicolor': 1, 'Iris-virginica': 2}
 return it[s]

接下来读入数据,converters={4: iris_type}中“4”指的是第5列:

path = u'D:/f盘/python/学习/iris.data' # 数据文件路径
data = np.loadtxt(path, dtype=float, delimiter=',', converters={4: iris_type})

读入结果:

Python中支持向量机SVM的使用方法详解

(2)将Iris分为训练集与测试集

x, y = np.split(data, (4,), axis=1)
x = x[:, :2]
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1, train_size=0.6)

1. split(数据,分割位置,轴=1(水平分割) or 0(垂直分割))。

2. x = x[:, :2]是为方便后期画图更直观,故只取了前两列特征值向量训练。

3. sklearn.model_selection.train_test_split随机划分训练集与测试集。train_test_split(train_data,train_target,test_size=数字, random_state=0)

参数解释:

train_data:所要划分的样本特征集

train_target:所要划分的样本结果

test_size:样本占比,如果是整数的话就是样本的数量

random_state:是随机数的种子。

随机数种子:其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。比如你每次都填1,其他参数一样的情况下你得到的随机数组是一样的。但填0或不填,每次都会不一样。随机数的产生取决于种子,随机数和种子之间的关系遵从以下两个规则:种子不同,产生不同的随机数;种子相同,即使实例不同也产生相同的随机数。

(3)训练svm分类器

# clf = svm.SVC(C=0.1, kernel='linear', decision_function_shape='ovr')
 clf = svm.SVC(C=0.8, kernel='rbf', gamma=20, decision_function_shape='ovr')
 clf.fit(x_train, y_train.ravel())

 

kernel='linear'时,为线性核,C越大分类效果越好,但有可能会过拟合(defaul C=1)。

kernel='rbf'时(default),为高斯核,gamma值越小,分类界面越连续;gamma值越大,分类界面越“散”,分类效果越好,但有可能会过拟合。

decision_function_shape='ovr'时,为one v rest,即一个类别与其他类别进行划分,

decision_function_shape='ovo'时,为one v one,即将类别两两之间进行划分,用二分类的方法模拟多分类的结果。

(4)计算svc分类器的准确率

print clf.score(x_train, y_train) # 精度
y_hat = clf.predict(x_train)
show_accuracy(y_hat, y_train, '训练集')
print clf.score(x_test, y_test)
y_hat = clf.predict(x_test)
show_accuracy(y_hat, y_test, '测试集')

 结果为:

Python中支持向量机SVM的使用方法详解

如果想查看决策函数,可以通过decision_function()实现

print 'decision_function:\n', clf.decision_function(x_train)
print '\npredict:\n', clf.predict(x_train)

 结果为:

Python中支持向量机SVM的使用方法详解Python中支持向量机SVM的使用方法详解

decision_function中每一列的值代表距离各类别的距离。

(5)绘制图像

1.确定坐标轴范围,x,y轴分别表示两个特征

x1_min, x1_max = x[:, 0].min(), x[:, 0].max() # 第0列的范围
x2_min, x2_max = x[:, 1].min(), x[:, 1].max() # 第1列的范围
x1, x2 = np.mgrid[x1_min:x1_max:200j, x2_min:x2_max:200j] # 生成网格采样点
grid_test = np.stack((x1.flat, x2.flat), axis=1) # 测试点
# print 'grid_test = \n', grid_testgrid_hat = clf.predict(grid_test) 

# 预测分类值grid_hat = grid_hat.reshape(x1.shape) # 使之与输入的形状相同

这里用到了mgrid()函数,该函数的作用这里简单介绍一下:

假设假设目标函数F(x,y)=x+y。x轴范围1~3,y轴范围4~6,当绘制图像时主要分四步进行:

【step1:x扩展】(朝右扩展):

         [1 1 1]

[2 2 2]

[3 3 3]

【step2:y扩展】(朝下扩展):

[4 5 6]

[4 5 6]

[4 5 6]

【step3:定位(xi,yi)】:

[(1,4) (1,5) (1,6)]

[(2,4) (2,5) (2,6)]

[(3,4) (3,5) (3,6)]

【step4:将(xi,yi)代入F(x,y)=x+y】

因此这里x1, x2 = np.mgrid[x1_min:x1_max:200j, x2_min:x2_max:200j]后的结果为:

Python中支持向量机SVM的使用方法详解

再通过stack()函数,axis=1,生成测试点

Python中支持向量机SVM的使用方法详解

2.指定默认字体

mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False

3.绘制

cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
plt.pcolormesh(x1, x2, grid_hat, cmap=cm_light)
plt.scatter(x[:, 0], x[:, 1], c=y, edgecolors='k', s=50, cmap=cm_dark) # 样本
plt.scatter(x_test[:, 0], x_test[:, 1], s=120, facecolors='none', zorder=10) # 圈中测试集样本
plt.xlabel(u'花萼长度', fontsize=13)
plt.ylabel(u'花萼宽度', fontsize=13)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title(u'鸢尾花SVM二特征分类', fontsize=15)
# plt.grid()
plt.show()

pcolormesh(x,y,z,cmap)这里参数代入x1,x2,grid_hat,cmap=cm_light绘制的是背景。

scatter中edgecolors是指描绘点的边缘色彩,s指描绘点的大小,cmap指点的颜色。

xlim指图的边界。

最终结果为:

Python中支持向量机SVM的使用方法详解

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
自己使用总结Python程序代码片段
Jun 02 Python
python访问mysql数据库的实现方法(2则示例)
Jan 06 Python
简单总结Python中序列与字典的相同和不同之处
Jan 19 Python
python去掉行尾的换行符方法
Jan 04 Python
Windows下安装Django框架的方法简明教程
Mar 28 Python
在Python中使用gRPC的方法示例
Aug 08 Python
Python 打印中文字符的三种方法
Aug 14 Python
python 随机生成10位数密码的实现代码
Jun 27 Python
Python 实现一个手机号码获取妹子名字的功能
Sep 25 Python
用python拟合等角螺线的实现示例
Dec 27 Python
Python生成器next方法和send方法区别详解
May 30 Python
python数据抓取3种方法总结
Feb 07 Python
详解python中的 is 操作符
Dec 26 #Python
matplotlib简介,安装和简单实例代码
Dec 26 #Python
Python中xrange与yield的用法实例分析
Dec 26 #Python
Python简单计算数组元素平均值的方法示例
Dec 26 #Python
Python爬虫获取整个站点中的所有外部链接代码示例
Dec 26 #Python
Python之web模板应用
Dec 26 #Python
通过python+selenium3实现浏览器刷简书文章阅读量
Dec 26 #Python
You might like
php mysql_list_dbs()函数用法示例
2017/03/29 PHP
深入学习微信网址链接解封的防封原理visit_type
2019/08/15 PHP
解决thinkPHP 5 nginx 部署时,只跳转首页的问题
2019/10/16 PHP
php实现商城购物车的思路和源码分析
2020/07/23 PHP
分享别人写的一个小型js框架
2007/08/13 Javascript
jQuery-ui中自动完成实现方法
2010/06/10 Javascript
js操纵跨frame的三级联动select下拉选项实例介绍
2013/05/19 Javascript
用C/C++来实现 Node.js 的模块(一)
2014/09/24 Javascript
JavaScript实现Iterator模式实例分析
2015/06/09 Javascript
jquery.mousewheel实现整屏翻屏效果
2015/08/30 Javascript
基于jQuery通过jQuery.form.js插件实现异步上传
2015/12/13 Javascript
详解handlebars+require基本使用方法
2016/12/21 Javascript
微信小程序 动态传参实例详解
2017/04/27 Javascript
vue与vue-i18n结合实现后台数据的多语言切换方法
2018/03/08 Javascript
Vue Element 分组+多选+可搜索Select选择器实现示例
2018/07/23 Javascript
微信小程序学习笔记之获取位置信息操作图文详解
2019/03/29 Javascript
vue使用localStorage保存登录信息 适用于移动端、PC端
2019/05/27 Javascript
JavaScript前端实现压缩图片功能
2020/03/06 Javascript
vue自定义标签和单页面多路由的实现代码
2020/05/03 Javascript
vue.js watch经常失效的场景与解决方案
2021/01/07 Vue.js
[01:32]2016国际邀请赛中国区预选赛CDEC战队教练采访
2016/06/26 DOTA
python实现逻辑回归的方法示例
2017/05/02 Python
详解Python3.6安装psutil模块和功能简介
2018/05/30 Python
Python中关键字global和nonlocal的区别详解
2018/09/03 Python
Python 读取串口数据,动态绘图的示例
2019/07/02 Python
获取Pytorch中间某一层权重或者特征的例子
2019/08/17 Python
解决python 读取excel时 日期变成数字并加.0的问题
2019/10/08 Python
Python 解码Base64 得到码流格式文本实例
2020/01/09 Python
解释一下钝化(Swap out)
2016/12/26 面试题
商业融资计划书
2014/04/29 职场文书
会计求职信
2014/05/29 职场文书
品牌转让协议书
2014/08/20 职场文书
迎七一演讲稿
2014/09/12 职场文书
文员岗位职责
2015/02/04 职场文书
MyBatis 动态SQL全面详解
2021/10/05 MySQL
Python MNIST手写体识别详解与试练
2021/11/07 Python