Python中支持向量机SVM的使用方法详解


Posted in Python onDecember 26, 2017

除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类。因为Python中的sklearn库也集成了SVM算法,本文的运行环境是Pycharm。

一、导入sklearn算法包

Scikit-Learn库已经实现了所有基本机器学习的算法,具体使用详见官方文档说明

skleran中集成了许多算法,其导入包的方式如下所示,

逻辑回归:from sklearn.linear_model import LogisticRegression

       朴素贝叶斯:from sklearn.naive_bayes import GaussianNB

 

K-近邻:from sklearn.neighbors import KNeighborsClassifier

 

决策树:from sklearn.tree import DecisionTreeClassifier

 

支持向量机:from sklearn import svm

 二、sklearn中svc的使用

(1)使用numpy中的loadtxt读入数据文件

loadtxt()的使用方法:

Python中支持向量机SVM的使用方法详解

fname:文件路径。eg:C:/Dataset/iris.txt。

dtype:数据类型。eg:float、str等。

delimiter:分隔符。eg:‘,'。

converters:将数据列与转换函数进行映射的字典。eg:{1:fun},含义是将第2列对应转换函数进行转换。

usecols:选取数据的列。

以Iris兰花数据集为例子:

由于从UCI数据库中下载的Iris原始数据集的样子是这样的,前四列为特征列,第五列为类别列,分别有三种类别Iris-setosa, Iris-versicolor, Iris-virginica。

 

Python中支持向量机SVM的使用方法详解

当使用numpy中的loadtxt函数导入该数据集时,假设数据类型dtype为浮点型,但是很明显第五列的数据类型并不是浮点型。

因此我们要额外做一个工作,即通过loadtxt()函数中的converters参数将第五列通过转换函数映射成浮点类型的数据。

首先,我们要写出一个转换函数:

def iris_type(s):
 it = {'Iris-setosa': 0, 'Iris-versicolor': 1, 'Iris-virginica': 2}
 return it[s]

接下来读入数据,converters={4: iris_type}中“4”指的是第5列:

path = u'D:/f盘/python/学习/iris.data' # 数据文件路径
data = np.loadtxt(path, dtype=float, delimiter=',', converters={4: iris_type})

读入结果:

Python中支持向量机SVM的使用方法详解

(2)将Iris分为训练集与测试集

x, y = np.split(data, (4,), axis=1)
x = x[:, :2]
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1, train_size=0.6)

1. split(数据,分割位置,轴=1(水平分割) or 0(垂直分割))。

2. x = x[:, :2]是为方便后期画图更直观,故只取了前两列特征值向量训练。

3. sklearn.model_selection.train_test_split随机划分训练集与测试集。train_test_split(train_data,train_target,test_size=数字, random_state=0)

参数解释:

train_data:所要划分的样本特征集

train_target:所要划分的样本结果

test_size:样本占比,如果是整数的话就是样本的数量

random_state:是随机数的种子。

随机数种子:其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。比如你每次都填1,其他参数一样的情况下你得到的随机数组是一样的。但填0或不填,每次都会不一样。随机数的产生取决于种子,随机数和种子之间的关系遵从以下两个规则:种子不同,产生不同的随机数;种子相同,即使实例不同也产生相同的随机数。

(3)训练svm分类器

# clf = svm.SVC(C=0.1, kernel='linear', decision_function_shape='ovr')
 clf = svm.SVC(C=0.8, kernel='rbf', gamma=20, decision_function_shape='ovr')
 clf.fit(x_train, y_train.ravel())

 

kernel='linear'时,为线性核,C越大分类效果越好,但有可能会过拟合(defaul C=1)。

kernel='rbf'时(default),为高斯核,gamma值越小,分类界面越连续;gamma值越大,分类界面越“散”,分类效果越好,但有可能会过拟合。

decision_function_shape='ovr'时,为one v rest,即一个类别与其他类别进行划分,

decision_function_shape='ovo'时,为one v one,即将类别两两之间进行划分,用二分类的方法模拟多分类的结果。

(4)计算svc分类器的准确率

print clf.score(x_train, y_train) # 精度
y_hat = clf.predict(x_train)
show_accuracy(y_hat, y_train, '训练集')
print clf.score(x_test, y_test)
y_hat = clf.predict(x_test)
show_accuracy(y_hat, y_test, '测试集')

 结果为:

Python中支持向量机SVM的使用方法详解

如果想查看决策函数,可以通过decision_function()实现

print 'decision_function:\n', clf.decision_function(x_train)
print '\npredict:\n', clf.predict(x_train)

 结果为:

Python中支持向量机SVM的使用方法详解Python中支持向量机SVM的使用方法详解

decision_function中每一列的值代表距离各类别的距离。

(5)绘制图像

1.确定坐标轴范围,x,y轴分别表示两个特征

x1_min, x1_max = x[:, 0].min(), x[:, 0].max() # 第0列的范围
x2_min, x2_max = x[:, 1].min(), x[:, 1].max() # 第1列的范围
x1, x2 = np.mgrid[x1_min:x1_max:200j, x2_min:x2_max:200j] # 生成网格采样点
grid_test = np.stack((x1.flat, x2.flat), axis=1) # 测试点
# print 'grid_test = \n', grid_testgrid_hat = clf.predict(grid_test) 

# 预测分类值grid_hat = grid_hat.reshape(x1.shape) # 使之与输入的形状相同

这里用到了mgrid()函数,该函数的作用这里简单介绍一下:

假设假设目标函数F(x,y)=x+y。x轴范围1~3,y轴范围4~6,当绘制图像时主要分四步进行:

【step1:x扩展】(朝右扩展):

         [1 1 1]

[2 2 2]

[3 3 3]

【step2:y扩展】(朝下扩展):

[4 5 6]

[4 5 6]

[4 5 6]

【step3:定位(xi,yi)】:

[(1,4) (1,5) (1,6)]

[(2,4) (2,5) (2,6)]

[(3,4) (3,5) (3,6)]

【step4:将(xi,yi)代入F(x,y)=x+y】

因此这里x1, x2 = np.mgrid[x1_min:x1_max:200j, x2_min:x2_max:200j]后的结果为:

Python中支持向量机SVM的使用方法详解

再通过stack()函数,axis=1,生成测试点

Python中支持向量机SVM的使用方法详解

2.指定默认字体

mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False

3.绘制

cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
plt.pcolormesh(x1, x2, grid_hat, cmap=cm_light)
plt.scatter(x[:, 0], x[:, 1], c=y, edgecolors='k', s=50, cmap=cm_dark) # 样本
plt.scatter(x_test[:, 0], x_test[:, 1], s=120, facecolors='none', zorder=10) # 圈中测试集样本
plt.xlabel(u'花萼长度', fontsize=13)
plt.ylabel(u'花萼宽度', fontsize=13)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title(u'鸢尾花SVM二特征分类', fontsize=15)
# plt.grid()
plt.show()

pcolormesh(x,y,z,cmap)这里参数代入x1,x2,grid_hat,cmap=cm_light绘制的是背景。

scatter中edgecolors是指描绘点的边缘色彩,s指描绘点的大小,cmap指点的颜色。

xlim指图的边界。

最终结果为:

Python中支持向量机SVM的使用方法详解

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python通过scapy获取局域网所有主机mac地址示例
May 04 Python
Python中set与frozenset方法和区别详解
May 23 Python
Python学习小技巧之利用字典的默认行为
May 20 Python
python将unicode转为str的方法
Jun 21 Python
python中的不可变数据类型与可变数据类型详解
Sep 16 Python
python绘制散点图并标记序号的方法
Dec 11 Python
通过pykafka接收Kafka消息队列的方法
Dec 27 Python
Python3.5基础之NumPy模块的使用图文与实例详解
Apr 24 Python
python破解bilibili滑动验证码登录功能
Sep 11 Python
python实现扫雷游戏的示例
Oct 20 Python
Python eval函数介绍及用法
Nov 09 Python
Python环境搭建过程从安装到Hello World
Feb 05 Python
详解python中的 is 操作符
Dec 26 #Python
matplotlib简介,安装和简单实例代码
Dec 26 #Python
Python中xrange与yield的用法实例分析
Dec 26 #Python
Python简单计算数组元素平均值的方法示例
Dec 26 #Python
Python爬虫获取整个站点中的所有外部链接代码示例
Dec 26 #Python
Python之web模板应用
Dec 26 #Python
通过python+selenium3实现浏览器刷简书文章阅读量
Dec 26 #Python
You might like
PHP静态新闻列表自动生成代码
2007/06/14 PHP
PHP的cURL库功能简介 抓取网页、POST数据及其他
2011/04/07 PHP
php IP转换整形(ip2long)的详解
2013/06/06 PHP
javascript CSS画图之基础篇
2009/07/29 Javascript
Ext.FormPanel 提交和 Ext.Ajax.request 异步提交函数的区别
2009/11/12 Javascript
jQuery 对Select的操作备忘记录
2011/07/04 Javascript
左右悬浮可分组的网站QQ在线客服代码(可谓经典)
2012/12/21 Javascript
Vue.js 和 MVVM 的注意事项
2016/11/07 Javascript
JS求解三元一次方程组值的方法
2017/01/03 Javascript
laravel5.4+vue+element简单搭建的示例代码
2017/08/29 Javascript
vue-cli中的webpack配置详解
2017/09/25 Javascript
vue利用v-for嵌套输出多层对象,分别输出到个表的方法
2018/09/07 Javascript
解决vue单页面修改样式无法覆盖问题
2019/08/05 Javascript
vue中npm包全局安装和局部安装过程
2019/09/03 Javascript
vue计算属性无法监听到数组内部变化的解决方案
2019/11/06 Javascript
跟老齐学Python之使用Python操作数据库(1)
2014/11/25 Python
对python3 urllib包与http包的使用详解
2018/05/10 Python
Python实现获取邮箱内容并解析的方法示例
2018/06/16 Python
对Python w和w+权限的区别详解
2019/01/23 Python
利用python求积分的实例
2019/07/03 Python
Django REST Framework序列化外键获取外键的值方法
2019/07/26 Python
Python 函数list&read&seek详解
2019/08/28 Python
浅谈HTML5新增和废弃的标签
2019/04/28 HTML / CSS
IRO美国官网:法国服装品牌
2018/03/06 全球购物
理肤泉加拿大官网:La Roche-Posay加拿大
2018/07/06 全球购物
MAC彩妆澳洲官网:M·A·C AU
2021/01/17 全球购物
一套Delphi的笔试题二
2013/05/11 面试题
汽车专业毕业生推荐信
2013/11/12 职场文书
车贷收入证明范本
2014/01/09 职场文书
工程造价专业大学生职业生涯规划书
2014/01/18 职场文书
祖国在我心中演讲稿300字
2014/05/04 职场文书
社区优秀志愿者先进事迹
2014/05/09 职场文书
工商管理专业自荐信
2014/06/03 职场文书
三八妇女节趣味活动方案
2014/08/23 职场文书
关于python爬虫应用urllib库作用分析
2021/09/04 Python
豆瓣2021评分最高动画剧集-豆瓣评分最高的动画剧集2021
2022/03/18 日漫