Python中支持向量机SVM的使用方法详解


Posted in Python onDecember 26, 2017

除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类。因为Python中的sklearn库也集成了SVM算法,本文的运行环境是Pycharm。

一、导入sklearn算法包

Scikit-Learn库已经实现了所有基本机器学习的算法,具体使用详见官方文档说明

skleran中集成了许多算法,其导入包的方式如下所示,

逻辑回归:from sklearn.linear_model import LogisticRegression

       朴素贝叶斯:from sklearn.naive_bayes import GaussianNB

 

K-近邻:from sklearn.neighbors import KNeighborsClassifier

 

决策树:from sklearn.tree import DecisionTreeClassifier

 

支持向量机:from sklearn import svm

 二、sklearn中svc的使用

(1)使用numpy中的loadtxt读入数据文件

loadtxt()的使用方法:

Python中支持向量机SVM的使用方法详解

fname:文件路径。eg:C:/Dataset/iris.txt。

dtype:数据类型。eg:float、str等。

delimiter:分隔符。eg:‘,'。

converters:将数据列与转换函数进行映射的字典。eg:{1:fun},含义是将第2列对应转换函数进行转换。

usecols:选取数据的列。

以Iris兰花数据集为例子:

由于从UCI数据库中下载的Iris原始数据集的样子是这样的,前四列为特征列,第五列为类别列,分别有三种类别Iris-setosa, Iris-versicolor, Iris-virginica。

 

Python中支持向量机SVM的使用方法详解

当使用numpy中的loadtxt函数导入该数据集时,假设数据类型dtype为浮点型,但是很明显第五列的数据类型并不是浮点型。

因此我们要额外做一个工作,即通过loadtxt()函数中的converters参数将第五列通过转换函数映射成浮点类型的数据。

首先,我们要写出一个转换函数:

def iris_type(s):
 it = {'Iris-setosa': 0, 'Iris-versicolor': 1, 'Iris-virginica': 2}
 return it[s]

接下来读入数据,converters={4: iris_type}中“4”指的是第5列:

path = u'D:/f盘/python/学习/iris.data' # 数据文件路径
data = np.loadtxt(path, dtype=float, delimiter=',', converters={4: iris_type})

读入结果:

Python中支持向量机SVM的使用方法详解

(2)将Iris分为训练集与测试集

x, y = np.split(data, (4,), axis=1)
x = x[:, :2]
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1, train_size=0.6)

1. split(数据,分割位置,轴=1(水平分割) or 0(垂直分割))。

2. x = x[:, :2]是为方便后期画图更直观,故只取了前两列特征值向量训练。

3. sklearn.model_selection.train_test_split随机划分训练集与测试集。train_test_split(train_data,train_target,test_size=数字, random_state=0)

参数解释:

train_data:所要划分的样本特征集

train_target:所要划分的样本结果

test_size:样本占比,如果是整数的话就是样本的数量

random_state:是随机数的种子。

随机数种子:其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。比如你每次都填1,其他参数一样的情况下你得到的随机数组是一样的。但填0或不填,每次都会不一样。随机数的产生取决于种子,随机数和种子之间的关系遵从以下两个规则:种子不同,产生不同的随机数;种子相同,即使实例不同也产生相同的随机数。

(3)训练svm分类器

# clf = svm.SVC(C=0.1, kernel='linear', decision_function_shape='ovr')
 clf = svm.SVC(C=0.8, kernel='rbf', gamma=20, decision_function_shape='ovr')
 clf.fit(x_train, y_train.ravel())

 

kernel='linear'时,为线性核,C越大分类效果越好,但有可能会过拟合(defaul C=1)。

kernel='rbf'时(default),为高斯核,gamma值越小,分类界面越连续;gamma值越大,分类界面越“散”,分类效果越好,但有可能会过拟合。

decision_function_shape='ovr'时,为one v rest,即一个类别与其他类别进行划分,

decision_function_shape='ovo'时,为one v one,即将类别两两之间进行划分,用二分类的方法模拟多分类的结果。

(4)计算svc分类器的准确率

print clf.score(x_train, y_train) # 精度
y_hat = clf.predict(x_train)
show_accuracy(y_hat, y_train, '训练集')
print clf.score(x_test, y_test)
y_hat = clf.predict(x_test)
show_accuracy(y_hat, y_test, '测试集')

 结果为:

Python中支持向量机SVM的使用方法详解

如果想查看决策函数,可以通过decision_function()实现

print 'decision_function:\n', clf.decision_function(x_train)
print '\npredict:\n', clf.predict(x_train)

 结果为:

Python中支持向量机SVM的使用方法详解Python中支持向量机SVM的使用方法详解

decision_function中每一列的值代表距离各类别的距离。

(5)绘制图像

1.确定坐标轴范围,x,y轴分别表示两个特征

x1_min, x1_max = x[:, 0].min(), x[:, 0].max() # 第0列的范围
x2_min, x2_max = x[:, 1].min(), x[:, 1].max() # 第1列的范围
x1, x2 = np.mgrid[x1_min:x1_max:200j, x2_min:x2_max:200j] # 生成网格采样点
grid_test = np.stack((x1.flat, x2.flat), axis=1) # 测试点
# print 'grid_test = \n', grid_testgrid_hat = clf.predict(grid_test) 

# 预测分类值grid_hat = grid_hat.reshape(x1.shape) # 使之与输入的形状相同

这里用到了mgrid()函数,该函数的作用这里简单介绍一下:

假设假设目标函数F(x,y)=x+y。x轴范围1~3,y轴范围4~6,当绘制图像时主要分四步进行:

【step1:x扩展】(朝右扩展):

         [1 1 1]

[2 2 2]

[3 3 3]

【step2:y扩展】(朝下扩展):

[4 5 6]

[4 5 6]

[4 5 6]

【step3:定位(xi,yi)】:

[(1,4) (1,5) (1,6)]

[(2,4) (2,5) (2,6)]

[(3,4) (3,5) (3,6)]

【step4:将(xi,yi)代入F(x,y)=x+y】

因此这里x1, x2 = np.mgrid[x1_min:x1_max:200j, x2_min:x2_max:200j]后的结果为:

Python中支持向量机SVM的使用方法详解

再通过stack()函数,axis=1,生成测试点

Python中支持向量机SVM的使用方法详解

2.指定默认字体

mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False

3.绘制

cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
plt.pcolormesh(x1, x2, grid_hat, cmap=cm_light)
plt.scatter(x[:, 0], x[:, 1], c=y, edgecolors='k', s=50, cmap=cm_dark) # 样本
plt.scatter(x_test[:, 0], x_test[:, 1], s=120, facecolors='none', zorder=10) # 圈中测试集样本
plt.xlabel(u'花萼长度', fontsize=13)
plt.ylabel(u'花萼宽度', fontsize=13)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title(u'鸢尾花SVM二特征分类', fontsize=15)
# plt.grid()
plt.show()

pcolormesh(x,y,z,cmap)这里参数代入x1,x2,grid_hat,cmap=cm_light绘制的是背景。

scatter中edgecolors是指描绘点的边缘色彩,s指描绘点的大小,cmap指点的颜色。

xlim指图的边界。

最终结果为:

Python中支持向量机SVM的使用方法详解

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
仅用50行代码实现一个Python编写的计算器的教程
Apr 17 Python
详解python实现读取邮件数据并下载附件的实例
Aug 03 Python
Python 加密的实例详解
Oct 09 Python
Python+OpenCV让电脑帮你玩微信跳一跳
Jan 04 Python
python按综合、销量排序抓取100页的淘宝商品列表信息
Feb 24 Python
python去除拼音声调字母,替换为字母的方法
Nov 28 Python
Python调用C语言的实现
Jul 26 Python
解决更改AUTH_USER_MODEL后出现的问题
May 14 Python
Python创建临时文件和文件夹
Aug 05 Python
手把手教你从PyCharm安装到激活(最新激活码),亲测有效可激活至2089年
Nov 25 Python
Python图像处理之图像拼接
Apr 28 Python
python使用torch随机初始化参数
Mar 22 Python
详解python中的 is 操作符
Dec 26 #Python
matplotlib简介,安装和简单实例代码
Dec 26 #Python
Python中xrange与yield的用法实例分析
Dec 26 #Python
Python简单计算数组元素平均值的方法示例
Dec 26 #Python
Python爬虫获取整个站点中的所有外部链接代码示例
Dec 26 #Python
Python之web模板应用
Dec 26 #Python
通过python+selenium3实现浏览器刷简书文章阅读量
Dec 26 #Python
You might like
windows环境下php配置memcache的具体操作步骤
2013/06/09 PHP
ThinkPHP多表联合查询的常用方法
2020/03/24 PHP
PHP中的流(streams)浅析
2015/07/02 PHP
PHP获取二维数组中某一列的值集合
2015/12/25 PHP
CMSPRESS 10行代码搞定 PHP无限级分类2
2018/03/30 PHP
js动态加载以及确定加载完成的代码
2011/07/31 Javascript
Bootstrap与KnockoutJs相结合实现分页效果实例详解
2016/05/03 Javascript
关于网页中的无缝滚动的js代码
2016/06/09 Javascript
vue+ElementUI实现订单页动态添加产品数据效果实例代码
2017/07/13 Javascript
关于JS与jQuery中的文档加载问题
2017/08/22 jQuery
JS实现div模块的截图并下载功能
2017/10/17 Javascript
Vue官方文档梳理之全局配置
2017/11/22 Javascript
Vue2.2.0+新特性整理及注意事项
2018/08/22 Javascript
vue 实现在函数中触发路由跳转的示例
2018/09/01 Javascript
nuxt踩坑之Vuex状态树的模块方式使用详解
2019/09/06 Javascript
vue+elementUI动态增加表单项并添加验证的代码详解
2020/12/17 Vue.js
[01:03:59]2018DOTA2亚洲邀请赛3月30日 小组赛B组VGJ.T VS Secret
2018/03/31 DOTA
[04:15]DOTA2-DPC中国联赛 正赛 Ehome vs Aster 选手采访
2021/03/11 DOTA
pandas groupby 分组取每组的前几行记录方法
2018/04/20 Python
python dataframe 输出结果整行显示的方法
2018/06/14 Python
python 抓包保存为pcap文件并解析的实例
2019/07/23 Python
centos+nginx+uwsgi+Django实现IP+port访问服务器
2019/11/15 Python
python爬虫模块URL管理器模块用法解析
2020/02/03 Python
python使用nibabel和sitk读取保存nii.gz文件实例
2020/07/01 Python
python使用建议技巧分享(三)
2020/08/18 Python
python向企业微信发送文字和图片消息的示例
2020/09/28 Python
香港时装购物网站:ZALORA香港
2017/04/23 全球购物
美国娱乐和流行文化商品店:FYE
2017/09/14 全球购物
Subside Sports德国:足球球衣和球迷商品
2019/06/08 全球购物
为什么需要版本控制
2016/10/28 面试题
新闻系毕业生推荐信
2013/11/16 职场文书
思想汇报格式
2014/01/05 职场文书
洗车工岗位职责
2014/03/15 职场文书
《暗黑破坏神2:重制版》本周进行第一轮A测 目前可官网进行申请报名
2021/04/07 其他游戏
使用MybatisPlus打印sql语句
2022/04/22 SQL Server
windows11选中自动复制怎么开启? Win11自动复制所选内容的方法
2022/07/23 数码科技