Python CVXOPT模块安装及使用解析


Posted in Python onAugust 01, 2019

Python中支持Convex Optimization(凸规划)的模块为CVXOPT,其安装方式为:

卸载原Pyhon中的Numpy

安装CVXOPT的whl文件,链接为:https://www.lfd.uci.edu/~gohlke/pythonlibs/

安装Numpy+mkl的whl文件,链接为:https://www.lfd.uci.edu/~gohlke/pythonlibs/

之所以选择这种安装方式,是因为Python的whl和pip直接install的不兼容性。

CVXOPT的官方说明文档网址为:http://cvxopt.org/index.html, 现最新版本为1.1.9,由Martin Andersen, Joachim Dahl 和Lieven Vandenberghe共同开发完成,能够解决线性规划和二次型规划问题,其应用场景如SVM中的Hard Margin SVM.

CVXOPT使用举例如下:

线性规划问题

例1:

Python CVXOPT模块安装及使用解析

Python程序代码:

import numpy as np
from cvxopt import matrix, solvers
A = matrix([[-1.0, -1.0, 0.0, 1.0], [1.0, -1.0, -1.0, -2.0]])
b = matrix([1.0, -2.0, 0.0, 4.0])
c = matrix([2.0, 1.0])
sol = solvers.lp(c,A,b)
print(sol['x'])
print(np.dot(sol['x'].T, c))
print(sol['primal objective'])

输出结果:

pcost    dcost    gap  pres  dres  k/t
 0: 2.6471e+00 -7.0588e-01 2e+01 8e-01 2e+00 1e+00
 1: 3.0726e+00 2.8437e+00 1e+00 1e-01 2e-01 3e-01
 2: 2.4891e+00 2.4808e+00 1e-01 1e-02 2e-02 5e-02
 3: 2.4999e+00 2.4998e+00 1e-03 1e-04 2e-04 5e-04
 4: 2.5000e+00 2.5000e+00 1e-05 1e-06 2e-06 5e-06
 5: 2.5000e+00 2.5000e+00 1e-07 1e-08 2e-08 5e-08
Optimal solution found.
{'primal objective': 2.4999999895543072, 's': <4x1 matrix, tc='d'>, 'dual infeasibility': 2.257878974569382e-08, 'primal slack': 2.0388399547464153e-08, 'dual objective': 2.4999999817312535, 'residual as dual infeasibility certificate': None, 'dual slack': 3.529915972607509e-09, 'x': <2x1 matrix, tc='d'>, 'iterations': 5, 'gap': 1.3974945737723005e-07, 'residual as primal infeasibility certificate': None, 'z': <4x1 matrix, tc='d'>, 'y': <0x1 matrix, tc='d'>, 'status': 'optimal', 'primal infeasibility': 1.1368786228004961e-08, 'relative gap': 5.5899783359379607e-08}
[ 5.00e-01]
[ 1.50e+00]

[[ 2.49999999]]

例2

Python CVXOPT模块安装及使用解析

Python程序代码

import numpy as np
from cvxopt import matrix, solvers
A = matrix([[1.0, 0.0, -1.0], [0.0, 1.0, -1.0]])
b = matrix([2.0, 2.0, -2.0])
c = matrix([1.0, 2.0])
d = matrix([-1.0, -2.0])
sol1 = solvers.lp(c,A,b)
min = np.dot(sol1['x'].T, c)
sol2 = solvers.lp(d,A,b)
max = -np.dot(sol2['x'].T, d)
print('min=%s,max=%s'%(min[0][0], max[0][0]))

输出结果:

pcost    dcost    gap  pres  dres  k/t
 0: 4.0000e+00 -0.0000e+00 4e+00 0e+00 0e+00 1e+00
 1: 2.7942e+00 1.9800e+00 8e-01 9e-17 7e-16 2e-01
 2: 2.0095e+00 1.9875e+00 2e-02 4e-16 2e-16 7e-03
 3: 2.0001e+00 1.9999e+00 2e-04 2e-16 6e-16 7e-05
 4: 2.0000e+00 2.0000e+00 2e-06 6e-17 5e-16 7e-07
 5: 2.0000e+00 2.0000e+00 2e-08 3e-16 7e-16 7e-09
Optimal solution found.
   pcost    dcost    gap  pres  dres  k/t
 0: -4.0000e+00 -8.0000e+00 4e+00 0e+00 1e-16 1e+00
 1: -5.2058e+00 -6.0200e+00 8e-01 1e-16 7e-16 2e-01
 2: -5.9905e+00 -6.0125e+00 2e-02 1e-16 0e+00 7e-03
 3: -5.9999e+00 -6.0001e+00 2e-04 1e-16 2e-16 7e-05
 4: -6.0000e+00 -6.0000e+00 2e-06 1e-16 2e-16 7e-07
Optimal solution found.
min=2.00000000952,max=5.99999904803

二次型规划问题

Python CVXOPT模块安装及使用解析

其中P,q,G,h,A,b为输入矩阵,该问题求解采用QP算法。
例1:

Python CVXOPT模块安装及使用解析

Python程序代码:

from cvxopt import matrix, solvers
Q = 2*matrix([[2, .5], [.5, 1]])
p = matrix([1.0, 1.0])
G = matrix([[-1.0,0.0],[0.0,-1.0]])
h = matrix([0.0,0.0])
A = matrix([1.0, 1.0], (1,2))
b = matrix(1.0)
sol=solvers.qp(Q, p, G, h, A, b)
print(sol['x'])
print(sol['primal objective'])

输出结果:

pcost    dcost    gap  pres  dres
 0: 1.8889e+00 7.7778e-01 1e+00 2e-16 2e+00
 1: 1.8769e+00 1.8320e+00 4e-02 0e+00 6e-02
 2: 1.8750e+00 1.8739e+00 1e-03 1e-16 5e-04
 3: 1.8750e+00 1.8750e+00 1e-05 6e-17 5e-06
 4: 1.8750e+00 1.8750e+00 1e-07 2e-16 5e-08
Optimal solution found.
[ 2.50e-01]
[ 7.50e-01]

例2:

Python CVXOPT模块安装及使用解析

Python程序代码:

from cvxopt import matrix, solvers
P = matrix([[1.0, 0.0], [0.0, 0.0]])
q = matrix([3.0, 4.0])
G = matrix([[-1.0, 0.0, -1.0, 2.0, 3.0], [0.0, -1.0, -3.0, 5.0, 4.0]])
h = matrix([0.0, 0.0, -15.0, 100.0, 80.0])
sol=solvers.qp(P, q, G, h)
print(sol['x'])
print(sol['primal objective'])

输出结果

pcost    dcost    gap  pres  dres
 0: 1.0780e+02 -7.6366e+02 9e+02 0e+00 4e+01
 1: 9.3245e+01 9.7637e+00 8e+01 6e-17 3e+00
 2: 6.7311e+01 3.2553e+01 3e+01 6e-17 1e+00
 3: 2.6071e+01 1.5068e+01 1e+01 2e-17 7e-01
 4: 3.7092e+01 2.3152e+01 1e+01 5e-18 4e-01
 5: 2.5352e+01 1.8652e+01 7e+00 7e-17 3e-16
 6: 2.0062e+01 1.9974e+01 9e-02 2e-16 3e-16
 7: 2.0001e+01 2.0000e+01 9e-04 8e-17 5e-16
 8: 2.0000e+01 2.0000e+01 9e-06 1e-16 2e-16
Optimal solution found.
[ 7.13e-07]
[ 5.00e+00]

20.00000617311241

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
用python记录运行pid,并在需要时kill掉它们的实例
Jan 16 Python
Python利用QQ邮箱发送邮件的实现方法(分享)
Jun 09 Python
mac安装scrapy并创建项目的实例讲解
Jun 13 Python
python绘制简单彩虹图
Nov 19 Python
网易2016研发工程师编程题 奖学金(python)
Jun 19 Python
Python机器学习算法库scikit-learn学习之决策树实现方法详解
Jul 04 Python
python pip源配置,pip配置文件存放位置的方法
Jul 12 Python
详解如何用python实现一个简单下载器的服务端和客户端
Oct 28 Python
Python使用sqlite3模块内置数据库
May 07 Python
django日志默认打印request请求信息的方法示例
May 17 Python
手把手教你如何用Pycharm2020.1.1配置远程连接的详细步骤
Aug 07 Python
JupyterNotebook 输出窗口的显示效果调整实现
Sep 22 Python
Python Selenium 之数据驱动测试的实现
Aug 01 #Python
Python 一键获取百度网盘提取码的方法
Aug 01 #Python
Django中的静态文件管理过程解析
Aug 01 #Python
pycharm 批量修改变量名称的方法
Aug 01 #Python
python腾讯语音合成实现过程解析
Aug 01 #Python
Python空间数据处理之GDAL读写遥感图像
Aug 01 #Python
Python生命游戏实现原理及过程解析(附源代码)
Aug 01 #Python
You might like
php下使用以下代码连接并测试
2008/04/09 PHP
解析PHP将对象转换成数组的方法(兼容多维数组类型)
2013/06/21 PHP
PHP实现无限级分类(不使用递归)
2015/10/22 PHP
JavaScript 页面坐标相关知识整理
2010/01/09 Javascript
实用的Jquery选项卡TAB示例代码
2013/08/28 Javascript
jQuery中hover方法和toggle方法使用指南
2015/02/27 Javascript
js实现字符串和数组之间相互转换操作
2016/01/12 Javascript
jQuery实现点击行选中或取消CheckBox的方法
2016/08/01 Javascript
webpack配置的最佳实践分享
2017/04/21 Javascript
jQuery实现一个简单的验证码功能
2017/06/26 jQuery
JS+HTML+CSS实现轮播效果
2017/11/28 Javascript
vuejs 制作背景淡入淡出切换动画的实例
2018/09/01 Javascript
JavaScript观察者模式原理与用法实例详解
2020/03/10 Javascript
jQuery 动态粒子效果示例代码
2020/07/07 jQuery
OpenLayers3实现图层控件功能
2020/09/25 Javascript
Python3 循环语句(for、while、break、range等)
2017/11/20 Python
python+opencv实现动态物体追踪
2018/01/09 Python
梅尔频率倒谱系数(mfcc)及Python实现
2019/06/18 Python
基于pytorch的lstm参数使用详解
2020/01/14 Python
关于tf.reverse_sequence()简述
2020/01/20 Python
Python如何使用内置库matplotlib绘制折线图
2020/02/24 Python
Python任务调度利器之APScheduler详解
2020/04/02 Python
PyCharm中如何直接使用Anaconda已安装的库
2020/05/28 Python
python 窃取摄像头照片的实现示例
2021/01/08 Python
受外贸欢迎的美国主机:BlueHost
2017/05/16 全球购物
波兰最早的运动鞋精品店之一:Street Supply
2019/08/29 全球购物
人力资源行政经理自我评价
2013/10/23 职场文书
服装厂厂长职责
2013/12/16 职场文书
反腐倡廉演讲稿
2014/05/22 职场文书
英语教师求职信
2014/06/16 职场文书
2014年政府采购工作总结
2014/12/09 职场文书
避暑山庄导游词
2015/02/04 职场文书
三潭印月的导游词
2015/02/12 职场文书
Nginx实现高可用集群构建(Keepalived+Haproxy+Nginx)
2021/05/27 Servers
Android使用EventBus发送消息,Fragment中接收消息的方法会执行多次
2022/04/24 Java/Android
使用 DataAnt 监控 Apache APISIX的原理解析
2022/07/07 Servers