Python CVXOPT模块安装及使用解析


Posted in Python onAugust 01, 2019

Python中支持Convex Optimization(凸规划)的模块为CVXOPT,其安装方式为:

卸载原Pyhon中的Numpy

安装CVXOPT的whl文件,链接为:https://www.lfd.uci.edu/~gohlke/pythonlibs/

安装Numpy+mkl的whl文件,链接为:https://www.lfd.uci.edu/~gohlke/pythonlibs/

之所以选择这种安装方式,是因为Python的whl和pip直接install的不兼容性。

CVXOPT的官方说明文档网址为:http://cvxopt.org/index.html, 现最新版本为1.1.9,由Martin Andersen, Joachim Dahl 和Lieven Vandenberghe共同开发完成,能够解决线性规划和二次型规划问题,其应用场景如SVM中的Hard Margin SVM.

CVXOPT使用举例如下:

线性规划问题

例1:

Python CVXOPT模块安装及使用解析

Python程序代码:

import numpy as np
from cvxopt import matrix, solvers
A = matrix([[-1.0, -1.0, 0.0, 1.0], [1.0, -1.0, -1.0, -2.0]])
b = matrix([1.0, -2.0, 0.0, 4.0])
c = matrix([2.0, 1.0])
sol = solvers.lp(c,A,b)
print(sol['x'])
print(np.dot(sol['x'].T, c))
print(sol['primal objective'])

输出结果:

pcost    dcost    gap  pres  dres  k/t
 0: 2.6471e+00 -7.0588e-01 2e+01 8e-01 2e+00 1e+00
 1: 3.0726e+00 2.8437e+00 1e+00 1e-01 2e-01 3e-01
 2: 2.4891e+00 2.4808e+00 1e-01 1e-02 2e-02 5e-02
 3: 2.4999e+00 2.4998e+00 1e-03 1e-04 2e-04 5e-04
 4: 2.5000e+00 2.5000e+00 1e-05 1e-06 2e-06 5e-06
 5: 2.5000e+00 2.5000e+00 1e-07 1e-08 2e-08 5e-08
Optimal solution found.
{'primal objective': 2.4999999895543072, 's': <4x1 matrix, tc='d'>, 'dual infeasibility': 2.257878974569382e-08, 'primal slack': 2.0388399547464153e-08, 'dual objective': 2.4999999817312535, 'residual as dual infeasibility certificate': None, 'dual slack': 3.529915972607509e-09, 'x': <2x1 matrix, tc='d'>, 'iterations': 5, 'gap': 1.3974945737723005e-07, 'residual as primal infeasibility certificate': None, 'z': <4x1 matrix, tc='d'>, 'y': <0x1 matrix, tc='d'>, 'status': 'optimal', 'primal infeasibility': 1.1368786228004961e-08, 'relative gap': 5.5899783359379607e-08}
[ 5.00e-01]
[ 1.50e+00]

[[ 2.49999999]]

例2

Python CVXOPT模块安装及使用解析

Python程序代码

import numpy as np
from cvxopt import matrix, solvers
A = matrix([[1.0, 0.0, -1.0], [0.0, 1.0, -1.0]])
b = matrix([2.0, 2.0, -2.0])
c = matrix([1.0, 2.0])
d = matrix([-1.0, -2.0])
sol1 = solvers.lp(c,A,b)
min = np.dot(sol1['x'].T, c)
sol2 = solvers.lp(d,A,b)
max = -np.dot(sol2['x'].T, d)
print('min=%s,max=%s'%(min[0][0], max[0][0]))

输出结果:

pcost    dcost    gap  pres  dres  k/t
 0: 4.0000e+00 -0.0000e+00 4e+00 0e+00 0e+00 1e+00
 1: 2.7942e+00 1.9800e+00 8e-01 9e-17 7e-16 2e-01
 2: 2.0095e+00 1.9875e+00 2e-02 4e-16 2e-16 7e-03
 3: 2.0001e+00 1.9999e+00 2e-04 2e-16 6e-16 7e-05
 4: 2.0000e+00 2.0000e+00 2e-06 6e-17 5e-16 7e-07
 5: 2.0000e+00 2.0000e+00 2e-08 3e-16 7e-16 7e-09
Optimal solution found.
   pcost    dcost    gap  pres  dres  k/t
 0: -4.0000e+00 -8.0000e+00 4e+00 0e+00 1e-16 1e+00
 1: -5.2058e+00 -6.0200e+00 8e-01 1e-16 7e-16 2e-01
 2: -5.9905e+00 -6.0125e+00 2e-02 1e-16 0e+00 7e-03
 3: -5.9999e+00 -6.0001e+00 2e-04 1e-16 2e-16 7e-05
 4: -6.0000e+00 -6.0000e+00 2e-06 1e-16 2e-16 7e-07
Optimal solution found.
min=2.00000000952,max=5.99999904803

二次型规划问题

Python CVXOPT模块安装及使用解析

其中P,q,G,h,A,b为输入矩阵,该问题求解采用QP算法。
例1:

Python CVXOPT模块安装及使用解析

Python程序代码:

from cvxopt import matrix, solvers
Q = 2*matrix([[2, .5], [.5, 1]])
p = matrix([1.0, 1.0])
G = matrix([[-1.0,0.0],[0.0,-1.0]])
h = matrix([0.0,0.0])
A = matrix([1.0, 1.0], (1,2))
b = matrix(1.0)
sol=solvers.qp(Q, p, G, h, A, b)
print(sol['x'])
print(sol['primal objective'])

输出结果:

pcost    dcost    gap  pres  dres
 0: 1.8889e+00 7.7778e-01 1e+00 2e-16 2e+00
 1: 1.8769e+00 1.8320e+00 4e-02 0e+00 6e-02
 2: 1.8750e+00 1.8739e+00 1e-03 1e-16 5e-04
 3: 1.8750e+00 1.8750e+00 1e-05 6e-17 5e-06
 4: 1.8750e+00 1.8750e+00 1e-07 2e-16 5e-08
Optimal solution found.
[ 2.50e-01]
[ 7.50e-01]

例2:

Python CVXOPT模块安装及使用解析

Python程序代码:

from cvxopt import matrix, solvers
P = matrix([[1.0, 0.0], [0.0, 0.0]])
q = matrix([3.0, 4.0])
G = matrix([[-1.0, 0.0, -1.0, 2.0, 3.0], [0.0, -1.0, -3.0, 5.0, 4.0]])
h = matrix([0.0, 0.0, -15.0, 100.0, 80.0])
sol=solvers.qp(P, q, G, h)
print(sol['x'])
print(sol['primal objective'])

输出结果

pcost    dcost    gap  pres  dres
 0: 1.0780e+02 -7.6366e+02 9e+02 0e+00 4e+01
 1: 9.3245e+01 9.7637e+00 8e+01 6e-17 3e+00
 2: 6.7311e+01 3.2553e+01 3e+01 6e-17 1e+00
 3: 2.6071e+01 1.5068e+01 1e+01 2e-17 7e-01
 4: 3.7092e+01 2.3152e+01 1e+01 5e-18 4e-01
 5: 2.5352e+01 1.8652e+01 7e+00 7e-17 3e-16
 6: 2.0062e+01 1.9974e+01 9e-02 2e-16 3e-16
 7: 2.0001e+01 2.0000e+01 9e-04 8e-17 5e-16
 8: 2.0000e+01 2.0000e+01 9e-06 1e-16 2e-16
Optimal solution found.
[ 7.13e-07]
[ 5.00e+00]

20.00000617311241

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python排序方法实例分析
Apr 30 Python
深入解析Python编程中JSON模块的使用
Oct 15 Python
Python实现提取XML内容并保存到Excel中的方法
Sep 01 Python
python根据list重命名文件夹里的所有文件实例
Oct 25 Python
python requests.post带head和body的实例
Jan 02 Python
python实现QQ批量登录功能
Jun 19 Python
python实现在函数中修改变量值的方法
Jul 16 Python
通过Python编写一个简单登录功能过程解析
Sep 04 Python
为什么黑客都用python(123个黑客必备的Python工具)
Jan 31 Python
Python类继承和多态原理解析
Feb 05 Python
jupyter notebook运行命令显示[*](解决办法)
May 18 Python
Python调用shell cmd方法代码示例解析
Jun 18 Python
Python Selenium 之数据驱动测试的实现
Aug 01 #Python
Python 一键获取百度网盘提取码的方法
Aug 01 #Python
Django中的静态文件管理过程解析
Aug 01 #Python
pycharm 批量修改变量名称的方法
Aug 01 #Python
python腾讯语音合成实现过程解析
Aug 01 #Python
Python空间数据处理之GDAL读写遥感图像
Aug 01 #Python
Python生命游戏实现原理及过程解析(附源代码)
Aug 01 #Python
You might like
PHP模拟asp中response类实现方法
2015/08/08 PHP
CI框架AR操作(数组形式)实现插入多条sql数据的方法
2016/05/18 PHP
浅谈PHP中pack、unpack的详细用法
2018/03/12 PHP
JQuery操作tr和td内容的方法实例
2013/03/06 Javascript
jquery sortable的拖动方法示例详解
2014/01/16 Javascript
js对图片base64编码字符串进行解码并输出图像示例
2014/03/17 Javascript
NodeJS学习笔记之FS文件模块
2015/01/13 NodeJs
jQuery插件slider实现拖动滑块选取价格范围
2015/04/30 Javascript
简介JavaScript中Boolean.toSource()方法的使用
2015/06/05 Javascript
JavaScript转换与解析JSON方法实例详解
2015/11/24 Javascript
js 将图片连接转换成base64格式的简单实例
2016/08/10 Javascript
Vue自定义指令介绍(2)
2016/12/08 Javascript
jQuery实现可兼容IE6的滚动监听功能
2017/09/20 jQuery
小程序实现左滑删除效果
2019/07/25 Javascript
Vue 组件的挂载与父子组件的传值实例
2020/09/02 Javascript
原生js+css实现tab切换功能
2020/09/17 Javascript
在VUE中使用lodash的debounce和throttle操作
2020/11/09 Javascript
[19:14]DOTA2 HEROS教学视频教你分分钟做大人-维萨吉
2014/06/24 DOTA
Python多线程同步Lock、RLock、Semaphore、Event实例
2014/11/21 Python
Python可变参数函数用法实例
2015/07/07 Python
Python中多线程的创建及基本调用方法
2016/07/08 Python
Python实现八大排序算法
2016/08/13 Python
python if not in 多条件判断代码
2016/09/21 Python
Python实现的堆排序算法示例
2018/04/29 Python
python 统计数组中元素出现次数并进行排序的实例
2018/07/02 Python
pandas DataFrame 行列索引及值的获取的方法
2019/07/02 Python
Pandas中DataFrame基本函数整理(小结)
2020/07/20 Python
Python request post上传文件常见要点
2020/11/20 Python
Pycharm 设置默认解释器路径和编码格式的操作
2021/02/05 Python
整理HTML5中表单的常用属性及新属性
2016/02/19 HTML / CSS
大女孩胸罩:Big Girls Bras
2016/12/15 全球购物
找到您丢失的钥匙、钱包和手机:Tile
2017/05/19 全球购物
C#软件工程师英语面试题
2015/06/07 面试题
党的群众路线教育实践活动心得体会(企业)
2014/11/03 职场文书
初中作文评语集锦
2014/12/25 职场文书
消费者理赔投诉书
2015/07/02 职场文书