Python CVXOPT模块安装及使用解析


Posted in Python onAugust 01, 2019

Python中支持Convex Optimization(凸规划)的模块为CVXOPT,其安装方式为:

卸载原Pyhon中的Numpy

安装CVXOPT的whl文件,链接为:https://www.lfd.uci.edu/~gohlke/pythonlibs/

安装Numpy+mkl的whl文件,链接为:https://www.lfd.uci.edu/~gohlke/pythonlibs/

之所以选择这种安装方式,是因为Python的whl和pip直接install的不兼容性。

CVXOPT的官方说明文档网址为:http://cvxopt.org/index.html, 现最新版本为1.1.9,由Martin Andersen, Joachim Dahl 和Lieven Vandenberghe共同开发完成,能够解决线性规划和二次型规划问题,其应用场景如SVM中的Hard Margin SVM.

CVXOPT使用举例如下:

线性规划问题

例1:

Python CVXOPT模块安装及使用解析

Python程序代码:

import numpy as np
from cvxopt import matrix, solvers
A = matrix([[-1.0, -1.0, 0.0, 1.0], [1.0, -1.0, -1.0, -2.0]])
b = matrix([1.0, -2.0, 0.0, 4.0])
c = matrix([2.0, 1.0])
sol = solvers.lp(c,A,b)
print(sol['x'])
print(np.dot(sol['x'].T, c))
print(sol['primal objective'])

输出结果:

pcost    dcost    gap  pres  dres  k/t
 0: 2.6471e+00 -7.0588e-01 2e+01 8e-01 2e+00 1e+00
 1: 3.0726e+00 2.8437e+00 1e+00 1e-01 2e-01 3e-01
 2: 2.4891e+00 2.4808e+00 1e-01 1e-02 2e-02 5e-02
 3: 2.4999e+00 2.4998e+00 1e-03 1e-04 2e-04 5e-04
 4: 2.5000e+00 2.5000e+00 1e-05 1e-06 2e-06 5e-06
 5: 2.5000e+00 2.5000e+00 1e-07 1e-08 2e-08 5e-08
Optimal solution found.
{'primal objective': 2.4999999895543072, 's': <4x1 matrix, tc='d'>, 'dual infeasibility': 2.257878974569382e-08, 'primal slack': 2.0388399547464153e-08, 'dual objective': 2.4999999817312535, 'residual as dual infeasibility certificate': None, 'dual slack': 3.529915972607509e-09, 'x': <2x1 matrix, tc='d'>, 'iterations': 5, 'gap': 1.3974945737723005e-07, 'residual as primal infeasibility certificate': None, 'z': <4x1 matrix, tc='d'>, 'y': <0x1 matrix, tc='d'>, 'status': 'optimal', 'primal infeasibility': 1.1368786228004961e-08, 'relative gap': 5.5899783359379607e-08}
[ 5.00e-01]
[ 1.50e+00]

[[ 2.49999999]]

例2

Python CVXOPT模块安装及使用解析

Python程序代码

import numpy as np
from cvxopt import matrix, solvers
A = matrix([[1.0, 0.0, -1.0], [0.0, 1.0, -1.0]])
b = matrix([2.0, 2.0, -2.0])
c = matrix([1.0, 2.0])
d = matrix([-1.0, -2.0])
sol1 = solvers.lp(c,A,b)
min = np.dot(sol1['x'].T, c)
sol2 = solvers.lp(d,A,b)
max = -np.dot(sol2['x'].T, d)
print('min=%s,max=%s'%(min[0][0], max[0][0]))

输出结果:

pcost    dcost    gap  pres  dres  k/t
 0: 4.0000e+00 -0.0000e+00 4e+00 0e+00 0e+00 1e+00
 1: 2.7942e+00 1.9800e+00 8e-01 9e-17 7e-16 2e-01
 2: 2.0095e+00 1.9875e+00 2e-02 4e-16 2e-16 7e-03
 3: 2.0001e+00 1.9999e+00 2e-04 2e-16 6e-16 7e-05
 4: 2.0000e+00 2.0000e+00 2e-06 6e-17 5e-16 7e-07
 5: 2.0000e+00 2.0000e+00 2e-08 3e-16 7e-16 7e-09
Optimal solution found.
   pcost    dcost    gap  pres  dres  k/t
 0: -4.0000e+00 -8.0000e+00 4e+00 0e+00 1e-16 1e+00
 1: -5.2058e+00 -6.0200e+00 8e-01 1e-16 7e-16 2e-01
 2: -5.9905e+00 -6.0125e+00 2e-02 1e-16 0e+00 7e-03
 3: -5.9999e+00 -6.0001e+00 2e-04 1e-16 2e-16 7e-05
 4: -6.0000e+00 -6.0000e+00 2e-06 1e-16 2e-16 7e-07
Optimal solution found.
min=2.00000000952,max=5.99999904803

二次型规划问题

Python CVXOPT模块安装及使用解析

其中P,q,G,h,A,b为输入矩阵,该问题求解采用QP算法。
例1:

Python CVXOPT模块安装及使用解析

Python程序代码:

from cvxopt import matrix, solvers
Q = 2*matrix([[2, .5], [.5, 1]])
p = matrix([1.0, 1.0])
G = matrix([[-1.0,0.0],[0.0,-1.0]])
h = matrix([0.0,0.0])
A = matrix([1.0, 1.0], (1,2))
b = matrix(1.0)
sol=solvers.qp(Q, p, G, h, A, b)
print(sol['x'])
print(sol['primal objective'])

输出结果:

pcost    dcost    gap  pres  dres
 0: 1.8889e+00 7.7778e-01 1e+00 2e-16 2e+00
 1: 1.8769e+00 1.8320e+00 4e-02 0e+00 6e-02
 2: 1.8750e+00 1.8739e+00 1e-03 1e-16 5e-04
 3: 1.8750e+00 1.8750e+00 1e-05 6e-17 5e-06
 4: 1.8750e+00 1.8750e+00 1e-07 2e-16 5e-08
Optimal solution found.
[ 2.50e-01]
[ 7.50e-01]

例2:

Python CVXOPT模块安装及使用解析

Python程序代码:

from cvxopt import matrix, solvers
P = matrix([[1.0, 0.0], [0.0, 0.0]])
q = matrix([3.0, 4.0])
G = matrix([[-1.0, 0.0, -1.0, 2.0, 3.0], [0.0, -1.0, -3.0, 5.0, 4.0]])
h = matrix([0.0, 0.0, -15.0, 100.0, 80.0])
sol=solvers.qp(P, q, G, h)
print(sol['x'])
print(sol['primal objective'])

输出结果

pcost    dcost    gap  pres  dres
 0: 1.0780e+02 -7.6366e+02 9e+02 0e+00 4e+01
 1: 9.3245e+01 9.7637e+00 8e+01 6e-17 3e+00
 2: 6.7311e+01 3.2553e+01 3e+01 6e-17 1e+00
 3: 2.6071e+01 1.5068e+01 1e+01 2e-17 7e-01
 4: 3.7092e+01 2.3152e+01 1e+01 5e-18 4e-01
 5: 2.5352e+01 1.8652e+01 7e+00 7e-17 3e-16
 6: 2.0062e+01 1.9974e+01 9e-02 2e-16 3e-16
 7: 2.0001e+01 2.0000e+01 9e-04 8e-17 5e-16
 8: 2.0000e+01 2.0000e+01 9e-06 1e-16 2e-16
Optimal solution found.
[ 7.13e-07]
[ 5.00e+00]

20.00000617311241

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Django在Win7下的安装及创建项目hello word简明教程
Jul 14 Python
Python isinstance函数介绍
Apr 14 Python
python的构建工具setup.py的方法使用示例
Oct 23 Python
Python装饰器模式定义与用法分析
Aug 06 Python
python学习开发mock接口
Apr 28 Python
python mysql断开重连的实现方法
Jul 26 Python
Python在cmd上打印彩色文字实现过程详解
Aug 07 Python
浅谈Pytorch中的torch.gather函数的含义
Aug 18 Python
Django Admin中增加导出CSV功能过程解析
Sep 04 Python
基于python实现文件加密功能
Jan 06 Python
Python print不能立即打印的解决方式
Feb 19 Python
Python3+RIDE+RobotFramework自动化测试框架搭建过程详解
Sep 23 Python
Python Selenium 之数据驱动测试的实现
Aug 01 #Python
Python 一键获取百度网盘提取码的方法
Aug 01 #Python
Django中的静态文件管理过程解析
Aug 01 #Python
pycharm 批量修改变量名称的方法
Aug 01 #Python
python腾讯语音合成实现过程解析
Aug 01 #Python
Python空间数据处理之GDAL读写遥感图像
Aug 01 #Python
Python生命游戏实现原理及过程解析(附源代码)
Aug 01 #Python
You might like
一个php作的文本留言本的例子(六)
2006/10/09 PHP
PHP读取xml方法介绍
2013/01/12 PHP
php实现的css文件背景图片下载器代码
2014/11/11 PHP
WordPress中用于创建以及获取侧边栏的PHP函数讲解
2015/12/29 PHP
PHP读取XML格式文件的方法总结
2017/02/27 PHP
jQuery学习笔记(3)--用jquery(插件)实现多选项卡功能
2013/04/08 Javascript
jQuery插件开发的五种形态小结
2015/03/04 Javascript
jquery实现超简洁的TAB选项卡效果代码
2015/08/28 Javascript
javascript实现很浪漫的气泡冒出特效
2020/09/05 Javascript
莱鸟介绍javascript onclick事件
2016/01/06 Javascript
JS操作JSON方法总结(推荐)
2016/06/14 Javascript
搭建Bootstrap离线文档的方法
2016/12/02 Javascript
js仿新浪微博消息发布功能
2017/02/17 Javascript
Node.JS更改Windows注册表Regedit的方法小结
2017/08/18 Javascript
NodeJS设计模式总结【单例模式,适配器模式,装饰模式,观察者模式】
2017/09/06 NodeJs
vue登录路由验证的实现
2017/12/13 Javascript
微信小程序实现炫酷的弹出式菜单特效
2019/01/28 Javascript
Vue中实现权限控制的方法示例
2019/06/07 Javascript
[38:21]2014 DOTA2国际邀请赛中国区预选赛5.21 TongFu VS LGD-CDEC
2014/05/22 DOTA
简单介绍Python下自己编写web框架的一些要点
2015/04/29 Python
Python中利用原始套接字进行网络编程的示例
2015/05/04 Python
python清除字符串里非数字字符的方法
2015/07/02 Python
Python使用matplotlib绘制余弦的散点图示例
2018/03/14 Python
解决Django layui {{}}冲突的问题
2019/08/29 Python
python导入不同目录下的自定义模块过程解析
2019/11/18 Python
CSS3中box-shadow的用法介绍
2015/07/15 HTML / CSS
css3的过滤效果简单实例
2016/08/03 HTML / CSS
Html5实现用户注册自动校验功能实例代码
2016/05/24 HTML / CSS
初入社会应届生求职信
2013/11/18 职场文书
教育技术学专业职业规划书
2014/03/03 职场文书
银行求职信范文
2014/05/26 职场文书
迎国庆演讲稿
2014/09/15 职场文书
群众路线班子对照检查材料
2014/09/25 职场文书
2014党支部对照检查材料思想汇报
2014/10/05 职场文书
严以用权专题学习研讨会发言材料
2015/11/09 职场文书
简单介绍Python的第三方库yaml
2021/06/18 Python