python基于opencv实现人脸识别


Posted in Python onJanuary 04, 2021

将opencv中haarcascade_frontalface_default.xml文件下载到本地,我们调用它辅助进行人脸识别。

识别图像中的人脸

#coding:utf-8
import cv2 as cv

# 读取原始图像
img = cv.imread('face.png')

# 调用熟悉的人脸分类器 识别特征类型
# 人脸 - haarcascade_frontalface_default.xml
# 人眼 - haarcascade_eye.xml
# 微笑 - haarcascade_smile.xml
face_detect = cv.CascadeClassifier('haarcascade_frontalface_default.xml')
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

# 检查人脸 按照1.1倍放到 周围最小像素为5
face_zone = face_detect.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5)
print ('识别人脸的信息:',face_zone)

# 绘制矩形和圆形检测人脸
for x, y, w, h in face_zone:
  # 绘制矩形人脸区域 thickness表示线的粗细
  cv.rectangle(img, pt1=(x, y), pt2=(x+w, y+h),color=[0,0,255], thickness=2)
  # 绘制圆形人脸区域 radius表示半径
  cv.circle(img, center=(x+w//2, y+h//2), radius=w//2, color=[0,255,0], thickness=2)

# 设置图片可以手动调节大小
cv.namedWindow("Easmount-CSDN", 0)

# 显示图片
cv.imshow("Easmount-CSDN", img)

# 等待显示 设置任意键退出程序
cv.waitKey(0)
cv.destroyAllWindows()

python基于opencv实现人脸识别

注意,此算法只能检测正脸,并且任何算法都有一定的准确率。如上图所示,图像中有一处被错误地检测为人脸。

CascadeClassifier:

是OpenCV中人脸检测的一个级联分类器,既可以使用Haar,也可以使用LBP特征。以Haar特征分类器为基础的对象检测技术是一种非常有效的技术。它是基于机器学习且使用大量的正负样本训练得到分类器。

Haar-like矩形特征:

是用于物体检测的数字图像特征。这类矩形特征模板由两个或多个全等的黑白矩形相邻组合而成,而矩形特征值是白色矩形的灰度值的和减去黑色矩形的灰度值的和,矩形特征对一些简单的图形结构,如线段、边缘比较敏感。如果把这样的矩形放在一个非人脸区域,那么计算出的特征值应该和人脸特征值不一样,所以这些矩形就是为了把人脸特征量化,以区分人脸和非人脸。

LBP:

是一种特征提取方式,能提取出图像的局部的纹理特征,最开始的LBP算子是在3X3窗口中,取中心像素的像素值为阀值,与其周围八个像素点的像素值比较,若像素点的像素值大于阀值,则此像素点被标记为1,否则标记为0。这样就能得到一个八位二进制的码,转换为十进制即LBP码,于是得到了这个窗口的LBP值,用这个值来反映这个窗口内的纹理信息。LBPH是在原始LBP上的一个改进,在opencv支持下我们可以直接调用函数直接创建一个LBPH人脸识别的模型。比如:cv.face.LBPHFaceRecognizer_create()。

detectMultiScale:

检测人脸算法,其参数:
? image表示要检测的输入图像
? objects表示检测到的人脸目标序列
? scaleFactor表示每次图像尺寸减小的比例
? minNeighbors表示每一个目标至少要被检测到3次才算是真的目标,因为周围的像素和不同的窗口大小都可以检测到人脸
? minSize表示目标的最小尺寸
? maxSize表示目标的最大尺寸

识别视频中的人脸

将视频中每一帧图像取出,进行图像人脸识别,标记识别到的人脸,显示每一帧图像。

#coding:utf-8
import cv2 as cv
import numpy as np

# 加载视频
cap = cv.VideoCapture('wang.mp4')

# 调用熟悉的人脸分类器 识别特征类型
# 人脸 - haarcascade_frontalface_default.xml
# 人眼 - haarcascade_eye.xm
# 微笑 - haarcascade_smile.xml
face_detect = cv.CascadeClassifier('haarcascade_frontalface_default.xml')

while True:
  # 读取视频片段
  flag, frame = cap.read()
  if flag == False:
    break

  # 灰度处理
  gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)

  # 检查人脸 按照1.1倍放到 周围最小像素为5
  face_zone = face_detect.detectMultiScale(gray, scaleFactor = 1.5, minNeighbors = 8)

  # 绘制矩形和圆形检测人脸
  for x, y, w, h in face_zone:
    cv.rectangle(frame, pt1 = (x, y), pt2 = (x+w, y+h), color = [0,0,255], thickness=2)
    cv.circle(frame, center = (x + w//2, y + h//2), radius = w//2, color = [0,255,0], thickness = 2)

  # 显示图片
  cv.imshow('video', frame)
  
  # 设置退出键和展示频率
  if ord('q') == cv.waitKey(25):
    break

# 释放资源
cv.destroyAllWindows()
cap.release()

python基于opencv实现人脸识别

识别摄像头中的人脸

#coding:utf-8
import cv2 as cv

# 识别电脑摄像头并打开
cap = cv.VideoCapture(0)

# 调用熟悉的人脸分类器 识别特征类型
# 人脸 - haarcascade_frontalface_default.xml
# 人眼 - haarcascade_eye.xm
# 微笑 - haarcascade_smile.xml
face_detect = cv.CascadeClassifier('haarcascade_frontalface_default.xml')

while True:
  # 读取视频片段
  flag, frame = cap.read()
  if flag == False:
    break

  # 灰度处理
  gray = cv.cvtColor(frame, code=cv.COLOR_BGR2GRAY)

  # 检查人脸 按照1.1倍放到 周围最小像素为5
  face_zone = face_detect.detectMultiScale(gray, scaleFactor = 1.1, minNeighbors = 5)

  # 绘制矩形和圆形检测人脸
  for x, y, w, h in face_zone:
    cv.rectangle(frame, pt1 = (x, y), pt2 = (x+w, y+h), color = [0,0,255], thickness=2)
    cv.circle(frame, center = (x + w//2, y + h//2), radius = w//2, color = [0,255,0], thickness = 2)

  # 显示图片
  cv.imshow('video', frame)
  
  # 设置退出键和展示频率
  if ord('q') == cv.waitKey(40):
    break

# 释放资源
cv.destroyAllWindows()
cap.release()

以上就是python基于opencv实现人脸识别的详细内容,更多关于python opencv 人脸识别的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
复习Python中的字符串知识点
Apr 14 Python
python常见数制转换实例分析
May 09 Python
Python原始字符串与Unicode字符串操作符用法实例分析
Jul 22 Python
python网络爬虫学习笔记(1)
Apr 09 Python
python3+PyQt5使用数据库窗口视图
Apr 24 Python
python用BeautifulSoup库简单爬虫实例分析
Jul 30 Python
Python 使用类写装饰器的小技巧
Sep 30 Python
Python简单过滤字母和数字的方法小结
Jan 09 Python
PyQt5的安装配置过程,将ui文件转为py文件后显示窗口的实例
Jun 19 Python
Python3 执行Linux Bash命令的方法
Jul 12 Python
Python错误的处理方法
Jun 23 Python
Python实现FTP文件定时自动下载的步骤
Dec 19 Python
利用python绘制正态分布曲线
Jan 04 #Python
Python 打印自己设计的字体的实例讲解
Jan 04 #Python
Python关于拓扑排序知识点讲解
Jan 04 #Python
Python经典五人分鱼实例讲解
Jan 04 #Python
Python约瑟夫生者死者小游戏实例讲解
Jan 04 #Python
python邮件中附加文字、html、图片、附件实现方法
Jan 04 #Python
python自动化发送邮件实例讲解
Jan 04 #Python
You might like
dede3.1分页文字采集过滤规则详说(图文教程)续四
2007/04/03 PHP
PHPAnalysis中文分词类详解
2014/06/13 PHP
android上传图片到PHP的过程详解
2015/08/03 PHP
javascript 函数式编程
2007/08/16 Javascript
JavaScript 对话框和状态栏使用说明
2009/10/25 Javascript
javascript数组的使用
2013/03/28 Javascript
限制textbox或textarea输入字符长度的JS代码
2013/10/16 Javascript
jQuery中addClass()方法用法实例
2015/01/05 Javascript
jQuery动态效果显示人物结构关系图的方法
2015/05/07 Javascript
Angularjs 创建可复用组件实例代码
2016/10/09 Javascript
JS闭包的几种常见形式实例详解
2017/09/16 Javascript
详解Vue-cli代理解决跨域问题
2017/09/27 Javascript
微信上传视频文件提示(推荐)
2018/11/22 Javascript
如何根据业务封装自己的功能组件
2019/04/19 Javascript
基于原生JS封装的Modal对话框插件的示例代码
2020/09/09 Javascript
[51:15]2014 DOTA2国际邀请赛中国区预选赛 Orenda VS LGD-GAMING
2014/05/22 DOTA
[02:15]2015国际邀请赛选手档案IG.Ferrari 430
2015/07/30 DOTA
python中numpy包使用教程之数组和相关操作详解
2017/07/30 Python
谈一谈基于python的面向对象编程基础
2019/05/21 Python
Pytorch 实现自定义参数层的例子
2019/08/17 Python
python单向循环链表原理与实现方法示例
2019/12/03 Python
如何使用python传入不确定个数参数
2020/02/18 Python
详解Python IO编程
2020/07/24 Python
python实现图片转字符画
2021/02/19 Python
抽象类和接口的区别
2012/09/19 面试题
毕业生个人求职的自我评价
2013/10/28 职场文书
户外拓展活动方案
2014/02/11 职场文书
贺卡寄语大全
2014/04/11 职场文书
推荐信怎么写
2014/05/09 职场文书
国庆节标语大全
2014/10/08 职场文书
党员群众路线个人整改措施思想汇报
2014/10/12 职场文书
2015年行风建设工作总结
2015/05/15 职场文书
入党申请书怎么写?
2019/06/11 职场文书
js实现上传图片到服务器
2021/04/11 Javascript
css3新特性的应用示例分析
2022/03/16 HTML / CSS
Nginx如何配置根据路径转发详解
2022/07/23 Servers