tensorflow estimator 使用hook实现finetune方式


Posted in Python onJanuary 21, 2020

为了实现finetune有如下两种解决方案:

model_fn里面定义好模型之后直接赋值

def model_fn(features, labels, mode, params):
 # .....
 # finetune
 if params.checkpoint_path and (not tf.train.latest_checkpoint(params.model_dir)):
 checkpoint_path = None
 if tf.gfile.IsDirectory(params.checkpoint_path):
  checkpoint_path = tf.train.latest_checkpoint(params.checkpoint_path)
 else:
  checkpoint_path = params.checkpoint_path

 tf.train.init_from_checkpoint(
  ckpt_dir_or_file=checkpoint_path,
  assignment_map={params.checkpoint_scope: params.checkpoint_scope} # 'OptimizeLoss/':'OptimizeLoss/'
 )

使用钩子 hooks。

可以在定义tf.contrib.learn.Experiment的时候通过train_monitors参数指定

# Define the experiment
 experiment = tf.contrib.learn.Experiment(
 estimator=estimator, # Estimator
 train_input_fn=train_input_fn, # First-class function
 eval_input_fn=eval_input_fn, # First-class function
 train_steps=params.train_steps, # Minibatch steps
 min_eval_frequency=params.eval_min_frequency, # Eval frequency
 # train_monitors=[], # Hooks for training
 # eval_hooks=[eval_input_hook], # Hooks for evaluation
 eval_steps=params.eval_steps # Use evaluation feeder until its empty
 )

也可以在定义tf.estimator.EstimatorSpec 的时候通过training_chief_hooks参数指定。

不过个人觉得最好还是在estimator中定义,让experiment只专注于控制实验的模式(训练次数,验证次数等等)。

def model_fn(features, labels, mode, params):

 # ....

 return tf.estimator.EstimatorSpec(
 mode=mode,
 predictions=predictions,
 loss=loss,
 train_op=train_op,
 eval_metric_ops=eval_metric_ops,
 # scaffold=get_scaffold(),
 # training_chief_hooks=None
 )

这里顺便解释以下tf.estimator.EstimatorSpec对像的作用。该对象描述来一个模型的方方面面。包括:

当前的模式:

mode: A ModeKeys. Specifies if this is training, evaluation or prediction.

计算图

predictions: Predictions Tensor or dict of Tensor.

loss: Training loss Tensor. Must be either scalar, or with shape [1].

train_op: Op for the training step.

eval_metric_ops: Dict of metric results keyed by name. The values of the dict are the results of calling a metric function, namely a (metric_tensor, update_op) tuple. metric_tensor should be evaluated without any impact on state (typically is a pure computation results based on variables.). For example, it should not trigger the update_op or requires any input fetching.

导出策略

export_outputs: Describes the output signatures to be exported to

SavedModel and used during serving. A dict {name: output} where:

name: An arbitrary name for this output.

output: an ExportOutput object such as ClassificationOutput, RegressionOutput, or PredictOutput. Single-headed models only need to specify one entry in this dictionary. Multi-headed models should specify one entry for each head, one of which must be named using signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY.

chief钩子 训练时的模型保存策略钩子CheckpointSaverHook, 模型恢复等

training_chief_hooks: Iterable of tf.train.SessionRunHook objects to run on the chief worker during training.

worker钩子 训练时的监控策略钩子如: NanTensorHook LoggingTensorHook 等

training_hooks: Iterable of tf.train.SessionRunHook objects to run on all workers during training.

指定初始化和saver

scaffold: A tf.train.Scaffold object that can be used to set initialization, saver, and more to be used in training.

evaluation钩子

evaluation_hooks: Iterable of tf.train.SessionRunHook objects to run during evaluation.

自定义的钩子如下:

class RestoreCheckpointHook(tf.train.SessionRunHook):
 def __init__(self,
   checkpoint_path,
   exclude_scope_patterns,
   include_scope_patterns
   ):
 tf.logging.info("Create RestoreCheckpointHook.")
 #super(IteratorInitializerHook, self).__init__()
 self.checkpoint_path = checkpoint_path

 self.exclude_scope_patterns = None if (not exclude_scope_patterns) else exclude_scope_patterns.split(',')
 self.include_scope_patterns = None if (not include_scope_patterns) else include_scope_patterns.split(',')


 def begin(self):
 # You can add ops to the graph here.
 print('Before starting the session.')

 # 1. Create saver

 #exclusions = []
 #if self.checkpoint_exclude_scopes:
 # exclusions = [scope.strip()
 #  for scope in self.checkpoint_exclude_scopes.split(',')]
 #
 #variables_to_restore = []
 #for var in slim.get_model_variables(): #tf.global_variables():
 # excluded = False
 # for exclusion in exclusions:
 # if var.op.name.startswith(exclusion):
 # excluded = True
 # break
 # if not excluded:
 # variables_to_restore.append(var)
 #inclusions
 #[var for var in tf.trainable_variables() if var.op.name.startswith('InceptionResnetV1')]

 variables_to_restore = tf.contrib.framework.filter_variables(
  slim.get_model_variables(),
  include_patterns=self.include_scope_patterns, # ['Conv'],
  exclude_patterns=self.exclude_scope_patterns, # ['biases', 'Logits'],

  # If True (default), performs re.search to find matches
  # (i.e. pattern can match any substring of the variable name).
  # If False, performs re.match (i.e. regexp should match from the beginning of the variable name).
  reg_search = True
 )
 self.saver = tf.train.Saver(variables_to_restore)


 def after_create_session(self, session, coord):
 # When this is called, the graph is finalized and
 # ops can no longer be added to the graph.

 print('Session created.')

 tf.logging.info('Fine-tuning from %s' % self.checkpoint_path)
 self.saver.restore(session, os.path.expanduser(self.checkpoint_path))
 tf.logging.info('End fineturn from %s' % self.checkpoint_path)

 def before_run(self, run_context):
 #print('Before calling session.run().')
 return None #SessionRunArgs(self.your_tensor)

 def after_run(self, run_context, run_values):
 #print('Done running one step. The value of my tensor: %s', run_values.results)
 #if you-need-to-stop-loop:
 # run_context.request_stop()
 pass


 def end(self, session):
 #print('Done with the session.')
 pass

以上这篇tensorflow estimator 使用hook实现finetune方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python实现从url中提取域名的几种方法
Sep 26 Python
在Python编程过程中用单元测试法调试代码的介绍
Apr 02 Python
Python中元组,列表,字典的区别
May 21 Python
对pandas中两种数据类型Series和DataFrame的区别详解
Nov 12 Python
python3实现用turtle模块画一棵随机樱花树
Nov 21 Python
在tensorflow中实现屏蔽输出的log信息
Feb 04 Python
django的403/404/500错误自定义页面的配置方式
May 21 Python
Python爬取12306车次信息代码详解
Aug 12 Python
Python如何急速下载第三方库详解
Nov 02 Python
分享PyCharm最新激活码(真永久激活方法)不用每月找安装参数或最新激活码了
Dec 27 Python
python 用递归实现通用爬虫解析器
Apr 16 Python
python爬取某网站原图作为壁纸
Jun 02 Python
Python实现FLV视频拼接功能
Jan 21 #Python
TFRecord格式存储数据与队列读取实例
Jan 21 #Python
TensorFlow dataset.shuffle、batch、repeat的使用详解
Jan 21 #Python
使用 tf.nn.dynamic_rnn 展开时间维度方式
Jan 21 #Python
python爬取本站电子书信息并入库的实现代码
Jan 20 #Python
浅谈Tensorflow 动态双向RNN的输出问题
Jan 20 #Python
关于tf.nn.dynamic_rnn返回值详解
Jan 20 #Python
You might like
php获取某个目录大小的代码
2008/09/10 PHP
基于PHP输出缓存(output_buffering)的深入理解
2013/06/13 PHP
ThinkPHP进程计数类Process用法实例详解
2015/09/25 PHP
PHP中array_keys和array_unique函数源码的分析
2016/02/26 PHP
PHP常见数组函数用法小结
2016/03/21 PHP
PHP实现负载均衡session共享redis缓存操作示例
2018/08/22 PHP
Track Image Loading效果代码分析
2007/08/13 Javascript
jQuery Ajax 全解析
2009/02/08 Javascript
JavaScript中实现块作用域的方法
2010/04/01 Javascript
javascript定时变换图片实例代码
2013/03/17 Javascript
Jquery attr("checked") 返回checked或undefined 获取选中失效
2013/10/10 Javascript
jQuery中:button选择器用法实例
2015/01/04 Javascript
jQuery实现仿腾讯迷你首页选项卡效果代码
2015/09/17 Javascript
angularjs+bootstrap实现自定义分页的实例代码
2017/06/19 Javascript
一个简易的js图片轮播效果
2017/07/22 Javascript
原生js+cookie实现购物车功能的方法分析
2017/12/21 Javascript
js+canvas实现简单扫雷小游戏
2021/01/22 Javascript
利用Python获取操作系统信息实例
2016/09/02 Python
Python数据分析之获取双色球历史信息的方法示例
2018/02/03 Python
用OpenCV将视频分解成单帧图片,图片合成视频示例
2019/12/10 Python
python matplotlib实现将图例放在图外
2020/04/17 Python
Hunkemöller西班牙:欧洲最大的内衣连锁店
2018/08/15 全球购物
WWE美国职业摔角官方商店:WWE Shop
2018/11/15 全球购物
美国隐形眼镜零售商:LensPure
2019/03/10 全球购物
意大利一家专营包包和配饰的网上商店:Borse Last Minute
2019/08/26 全球购物
Helly Hansen工作服美国官方网上商店:为最恶劣的环境
2019/09/04 全球购物
英国领先的在线鱼贩:The Fish Society
2020/08/12 全球购物
请写出 float x 与"零值"比较的 if 语句
2016/01/04 面试题
校园安全标语
2014/06/07 职场文书
网络营销计划书
2015/01/17 职场文书
2015年个人招商工作总结
2015/04/25 职场文书
超强台风观后感
2015/06/09 职场文书
2015小学音乐教师个人工作总结
2015/07/21 职场文书
基于python实现银行管理系统
2021/04/20 Python
「我的青春恋爱物语果然有问题。-妄言录-」第20卷封面公开
2022/03/21 日漫
Windows server 2012搭建FTP服务器
2022/04/29 Servers