关于ResNeXt网络的pytorch实现


Posted in Python onJanuary 14, 2020

此处需要pip install pretrainedmodels

"""
Finetuning Torchvision Models

"""

from __future__ import print_function 
from __future__ import division
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
import argparse
import pretrainedmodels.models.resnext as resnext

print("PyTorch Version: ",torch.__version__)
print("Torchvision Version: ",torchvision.__version__)


# Top level data directory. Here we assume the format of the directory conforms 
#  to the ImageFolder structure
#data_dir = "./data/hymenoptera_data"
data_dir = "/media/dell/dell/data/13/"
# Models to choose from [resnet, alexnet, vgg, squeezenet, densenet, inception]
model_name = "resnext"

# Number of classes in the dataset
num_classes = 171

# Batch size for training (change depending on how much memory you have)
batch_size = 16

# Number of epochs to train for 
num_epochs = 1000

# Flag for feature extracting. When False, we finetune the whole model, 
#  when True we only update the reshaped layer params
feature_extract = False

# 参数设置,使得我们能够手动输入命令行参数,就是让风格变得和Linux命令行差不多
parser = argparse.ArgumentParser(description='PyTorch seresnet')
parser.add_argument('--outf', default='/home/dell/Desktop/zhou/train7', help='folder to output images and model checkpoints') #输出结果保存路径
parser.add_argument('--net', default='/home/dell/Desktop/zhou/train7/resnext.pth', help="path to net (to continue training)") #恢复训练时的模型路径
args = parser.parse_args()


def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,is_inception=False):
#def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,scheduler, is_inception=False):
  since = time.time()

  val_acc_history = []
  
  best_model_wts = copy.deepcopy(model.state_dict())
  best_acc = 0.0
  print("Start Training, resnext!") # 定义遍历数据集的次数
  with open("/home/dell/Desktop/zhou/train7/acc.txt", "w") as f1:
    with open("/home/dell/Desktop/zhou/train7/log.txt", "w")as f2:
      for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch+1, num_epochs))
        print('*' * 10)
        # Each epoch has a training and validation phase
        for phase in ['train', 'val']:
          if phase == 'train':
            #scheduler.step()
            model.train() # Set model to training mode
          else:
            model.eval()  # Set model to evaluate mode
    
          running_loss = 0.0
          running_corrects = 0
    
          # Iterate over data.
          for inputs, labels in dataloaders[phase]:
            inputs = inputs.to(device)
            labels = labels.to(device)
    
            # zero the parameter gradients
            optimizer.zero_grad()
    
            # forward
            # track history if only in train
            with torch.set_grad_enabled(phase == 'train'):
              # Get model outputs and calculate loss
              # Special case for inception because in training it has an auxiliary output. In train
              #  mode we calculate the loss by summing the final output and the auxiliary output
              #  but in testing we only consider the final output.
              if is_inception and phase == 'train':
                # From https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958
                outputs, aux_outputs = model(inputs)
                loss1 = criterion(outputs, labels)
                loss2 = criterion(aux_outputs, labels)
                loss = loss1 + 0.4*loss2
              else:
                outputs = model(inputs)
                loss = criterion(outputs, labels)
    
              _, preds = torch.max(outputs, 1)
    
              # backward + optimize only if in training phase
              if phase == 'train':
                loss.backward()
                optimizer.step()
    
            # statistics
            running_loss += loss.item() * inputs.size(0)
            running_corrects += torch.sum(preds == labels.data)
          epoch_loss = running_loss / len(dataloaders[phase].dataset)
          epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
    
          print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
          f2.write('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
          f2.write('\n')
          f2.flush()           
          # deep copy the model
          if phase == 'val':
            if (epoch+1)%5==0:
              #print('Saving model......')
              torch.save(model.state_dict(), '%s/inception_%03d.pth' % (args.outf, epoch + 1))
            f1.write("EPOCH=%03d,Accuracy= %.3f%%" % (epoch + 1, 100*epoch_acc))
            f1.write('\n')
            f1.flush()
          if phase == 'val' and epoch_acc > best_acc:
            f3 = open("/home/dell/Desktop/zhou/train7/best_acc.txt", "w")
            f3.write("EPOCH=%d,best_acc= %.3f%%" % (epoch + 1,100*epoch_acc))
            f3.close()
            best_acc = epoch_acc
            best_model_wts = copy.deepcopy(model.state_dict())
          if phase == 'val':
            val_acc_history.append(epoch_acc)

  time_elapsed = time.time() - since
  print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
  print('Best val Acc: {:4f}'.format(best_acc))
  # load best model weights
  model.load_state_dict(best_model_wts)
  return model, val_acc_history


def set_parameter_requires_grad(model, feature_extracting):
  if feature_extracting:
    for param in model.parameters():
      param.requires_grad = False



def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
  # Initialize these variables which will be set in this if statement. Each of these
  #  variables is model specific.
  model_ft = None
  input_size = 0

  if model_name == "resnet":
    """ Resnet18
    """
    model_ft = models.resnet18(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.fc.in_features
    model_ft.fc = nn.Linear(num_ftrs, num_classes)
    input_size = 224

  elif model_name == "alexnet":
    """ Alexnet
    """
    model_ft = models.alexnet(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.classifier[6].in_features
    model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
    input_size = 224

  elif model_name == "vgg":
    """ VGG11_bn
    """
    model_ft = models.vgg11_bn(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.classifier[6].in_features
    model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
    input_size = 224

  elif model_name == "squeezenet":
    """ Squeezenet
    """
    model_ft = models.squeezenet1_0(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))
    model_ft.num_classes = num_classes
    input_size = 224

  elif model_name == "densenet":
    """ Densenet
    """
    model_ft = models.densenet121(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.classifier.in_features
    model_ft.classifier = nn.Linear(num_ftrs, num_classes) 
    input_size = 224

  elif model_name == "resnext":
    """ resnext
    Be careful, expects (3,224,224) sized images 
    """
    model_ft = resnext.resnext101_64x4d(num_classes=1000, pretrained='imagenet')
    set_parameter_requires_grad(model_ft, feature_extract)
    model_ft.last_linear = nn.Linear(2048, num_classes)   
    #pre='/home/dell/Desktop/zhou/train6/inception_009.pth'
    #model_ft.load_state_dict(torch.load(pre))
    input_size = 224

  else:
    print("Invalid model name, exiting...")
    exit()
  
  return model_ft, input_size

# Initialize the model for this run
model_ft, input_size = initialize_model(model_name, num_classes, feature_extract, use_pretrained=True)

# Print the model we just instantiated
#print(model_ft) 



data_transforms = {
  'train': transforms.Compose([
    transforms.RandomResizedCrop(input_size),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
  ]),
  'val': transforms.Compose([
    transforms.Resize(input_size),
    transforms.CenterCrop(input_size),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
  ]),
}

print("Initializing Datasets and Dataloaders...")


# Create training and validation datasets
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
# Create training and validation dataloaders
dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=4) for x in ['train', 'val']}

# Detect if we have a GPU available
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")

#we='/home/dell/Desktop/dj/inception_050.pth'
#model_ft.load_state_dict(torch.load(we))#diaoyong
# Send the model to GPU
model_ft = model_ft.to(device)

params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:
  params_to_update = []
  for name,param in model_ft.named_parameters():
    if param.requires_grad == True:
      params_to_update.append(param)
      print("\t",name)
else:
  for name,param in model_ft.named_parameters():
    if param.requires_grad == True:
      print("\t",name)

# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(params_to_update, lr=0.01, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
#exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=30, gamma=0.95)

# Setup the loss fxn
criterion = nn.CrossEntropyLoss()
print(model_ft)
# Train and evaluate
model_ft, hist = train_model(model_ft, dataloaders_dict, criterion, optimizer_ft, num_epochs=num_epochs, is_inception=False)

以上这篇关于ResNeXt网络的pytorch实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
回调函数的意义以及python实现实例
Jun 20 Python
python获取文件路径、文件名、后缀名的实例
Apr 23 Python
Python切片操作去除字符串首尾的空格
Apr 22 Python
使用Python实现企业微信的自动打卡功能
Apr 30 Python
Django 实现外键去除自动添加的后缀‘_id’
Nov 15 Python
Pycharm+Python工程,引用子模块的实现
Mar 09 Python
详解使用python3.7配置开发钉钉群自定义机器人(2020年新版攻略)
Apr 01 Python
Python实现在线批量美颜功能过程解析
Jun 10 Python
TensorFlow的环境配置与安装教程详解(win10+GeForce GTX1060+CUDA 9.0+cuDNN7.3+tensorflow-gpu 1.12.0+python3.5.5)
Jun 22 Python
Pycharm自带Git实现版本管理的方法步骤
Sep 18 Python
如何在Python中创建二叉树
Mar 30 Python
Python函数中apply、map、applymap的区别
Nov 27 Python
Python属性和内建属性实例解析
Jan 14 #Python
Python程序控制语句用法实例分析
Jan 14 #Python
dpn网络的pytorch实现方式
Jan 14 #Python
Django之form组件自动校验数据实现
Jan 14 #Python
简单了解python filter、map、reduce的区别
Jan 14 #Python
Python vtk读取并显示dicom文件示例
Jan 13 #Python
Python解析多帧dicom数据详解
Jan 13 #Python
You might like
PHP获取和操作配置文件php.ini的几个函数介绍
2013/06/24 PHP
PHP的curl函数的用法总结
2019/02/14 PHP
PHP连接MySQL数据库操作代码实例解析
2020/07/11 PHP
jquery 卷帘效果实现代码(不同方向)
2013/02/05 Javascript
Javascript中匿名函数的多种调用方式总结
2013/12/06 Javascript
通过隐藏iframe实现文件下载的js方法介绍
2014/02/26 Javascript
JavaScript计时器示例分析
2015/02/05 Javascript
JS实现环形进度条(从0到100%)效果
2016/07/05 Javascript
jQuery实现日期联动效果实例
2016/07/26 Javascript
JS简单实现浮动窗口效果示例
2016/09/07 Javascript
ES5学习教程之Array对象
2017/04/01 Javascript
js 开发之autocomplete="off"在chrom中失效的解决办法
2017/09/28 Javascript
分享ES6的7个实用技巧
2018/01/18 Javascript
纯javascript前端实现base64图片下载(兼容IE10+)
2018/09/14 Javascript
vue elementui el-form rules动态验证的实例代码详解
2019/05/23 Javascript
[01:06]DOTA2亚洲邀请赛专属珍藏-荧煌之礼
2017/03/24 DOTA
Python使用代理抓取网站图片(多线程)
2014/03/14 Python
Python中用于返回绝对值的abs()方法
2015/05/14 Python
Python标准库之Sys模块使用详解
2015/05/23 Python
python使用suds调用webservice接口的方法
2019/01/03 Python
python创建学生成绩管理系统
2019/11/22 Python
python和php哪个容易学
2020/06/19 Python
html5的新玩法——语音搜索
2013/01/03 HTML / CSS
Douglas意大利官网:购买香水和化妆品
2020/05/27 全球购物
JSF界面控制层技术
2013/06/17 面试题
客户接待方案
2014/02/26 职场文书
群众路线教育党课主持词
2014/04/01 职场文书
关于安全的演讲稿
2014/05/09 职场文书
监理中标通知书
2015/04/16 职场文书
志愿者服务活动总结报告
2015/05/06 职场文书
大学运动会通讯稿
2015/07/18 职场文书
思品教学工作总结
2015/08/10 职场文书
导游词之无锡梅园
2019/11/28 职场文书
js实现上传图片到服务器
2021/04/11 Javascript
使用Python的开发框架Brownie部署以太坊智能合约
2021/05/28 Python
Python 数据结构之十大经典排序算法一文通关
2021/10/16 Python