关于ResNeXt网络的pytorch实现


Posted in Python onJanuary 14, 2020

此处需要pip install pretrainedmodels

"""
Finetuning Torchvision Models

"""

from __future__ import print_function 
from __future__ import division
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
import argparse
import pretrainedmodels.models.resnext as resnext

print("PyTorch Version: ",torch.__version__)
print("Torchvision Version: ",torchvision.__version__)


# Top level data directory. Here we assume the format of the directory conforms 
#  to the ImageFolder structure
#data_dir = "./data/hymenoptera_data"
data_dir = "/media/dell/dell/data/13/"
# Models to choose from [resnet, alexnet, vgg, squeezenet, densenet, inception]
model_name = "resnext"

# Number of classes in the dataset
num_classes = 171

# Batch size for training (change depending on how much memory you have)
batch_size = 16

# Number of epochs to train for 
num_epochs = 1000

# Flag for feature extracting. When False, we finetune the whole model, 
#  when True we only update the reshaped layer params
feature_extract = False

# 参数设置,使得我们能够手动输入命令行参数,就是让风格变得和Linux命令行差不多
parser = argparse.ArgumentParser(description='PyTorch seresnet')
parser.add_argument('--outf', default='/home/dell/Desktop/zhou/train7', help='folder to output images and model checkpoints') #输出结果保存路径
parser.add_argument('--net', default='/home/dell/Desktop/zhou/train7/resnext.pth', help="path to net (to continue training)") #恢复训练时的模型路径
args = parser.parse_args()


def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,is_inception=False):
#def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,scheduler, is_inception=False):
  since = time.time()

  val_acc_history = []
  
  best_model_wts = copy.deepcopy(model.state_dict())
  best_acc = 0.0
  print("Start Training, resnext!") # 定义遍历数据集的次数
  with open("/home/dell/Desktop/zhou/train7/acc.txt", "w") as f1:
    with open("/home/dell/Desktop/zhou/train7/log.txt", "w")as f2:
      for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch+1, num_epochs))
        print('*' * 10)
        # Each epoch has a training and validation phase
        for phase in ['train', 'val']:
          if phase == 'train':
            #scheduler.step()
            model.train() # Set model to training mode
          else:
            model.eval()  # Set model to evaluate mode
    
          running_loss = 0.0
          running_corrects = 0
    
          # Iterate over data.
          for inputs, labels in dataloaders[phase]:
            inputs = inputs.to(device)
            labels = labels.to(device)
    
            # zero the parameter gradients
            optimizer.zero_grad()
    
            # forward
            # track history if only in train
            with torch.set_grad_enabled(phase == 'train'):
              # Get model outputs and calculate loss
              # Special case for inception because in training it has an auxiliary output. In train
              #  mode we calculate the loss by summing the final output and the auxiliary output
              #  but in testing we only consider the final output.
              if is_inception and phase == 'train':
                # From https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958
                outputs, aux_outputs = model(inputs)
                loss1 = criterion(outputs, labels)
                loss2 = criterion(aux_outputs, labels)
                loss = loss1 + 0.4*loss2
              else:
                outputs = model(inputs)
                loss = criterion(outputs, labels)
    
              _, preds = torch.max(outputs, 1)
    
              # backward + optimize only if in training phase
              if phase == 'train':
                loss.backward()
                optimizer.step()
    
            # statistics
            running_loss += loss.item() * inputs.size(0)
            running_corrects += torch.sum(preds == labels.data)
          epoch_loss = running_loss / len(dataloaders[phase].dataset)
          epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
    
          print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
          f2.write('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
          f2.write('\n')
          f2.flush()           
          # deep copy the model
          if phase == 'val':
            if (epoch+1)%5==0:
              #print('Saving model......')
              torch.save(model.state_dict(), '%s/inception_%03d.pth' % (args.outf, epoch + 1))
            f1.write("EPOCH=%03d,Accuracy= %.3f%%" % (epoch + 1, 100*epoch_acc))
            f1.write('\n')
            f1.flush()
          if phase == 'val' and epoch_acc > best_acc:
            f3 = open("/home/dell/Desktop/zhou/train7/best_acc.txt", "w")
            f3.write("EPOCH=%d,best_acc= %.3f%%" % (epoch + 1,100*epoch_acc))
            f3.close()
            best_acc = epoch_acc
            best_model_wts = copy.deepcopy(model.state_dict())
          if phase == 'val':
            val_acc_history.append(epoch_acc)

  time_elapsed = time.time() - since
  print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
  print('Best val Acc: {:4f}'.format(best_acc))
  # load best model weights
  model.load_state_dict(best_model_wts)
  return model, val_acc_history


def set_parameter_requires_grad(model, feature_extracting):
  if feature_extracting:
    for param in model.parameters():
      param.requires_grad = False



def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
  # Initialize these variables which will be set in this if statement. Each of these
  #  variables is model specific.
  model_ft = None
  input_size = 0

  if model_name == "resnet":
    """ Resnet18
    """
    model_ft = models.resnet18(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.fc.in_features
    model_ft.fc = nn.Linear(num_ftrs, num_classes)
    input_size = 224

  elif model_name == "alexnet":
    """ Alexnet
    """
    model_ft = models.alexnet(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.classifier[6].in_features
    model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
    input_size = 224

  elif model_name == "vgg":
    """ VGG11_bn
    """
    model_ft = models.vgg11_bn(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.classifier[6].in_features
    model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
    input_size = 224

  elif model_name == "squeezenet":
    """ Squeezenet
    """
    model_ft = models.squeezenet1_0(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))
    model_ft.num_classes = num_classes
    input_size = 224

  elif model_name == "densenet":
    """ Densenet
    """
    model_ft = models.densenet121(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.classifier.in_features
    model_ft.classifier = nn.Linear(num_ftrs, num_classes) 
    input_size = 224

  elif model_name == "resnext":
    """ resnext
    Be careful, expects (3,224,224) sized images 
    """
    model_ft = resnext.resnext101_64x4d(num_classes=1000, pretrained='imagenet')
    set_parameter_requires_grad(model_ft, feature_extract)
    model_ft.last_linear = nn.Linear(2048, num_classes)   
    #pre='/home/dell/Desktop/zhou/train6/inception_009.pth'
    #model_ft.load_state_dict(torch.load(pre))
    input_size = 224

  else:
    print("Invalid model name, exiting...")
    exit()
  
  return model_ft, input_size

# Initialize the model for this run
model_ft, input_size = initialize_model(model_name, num_classes, feature_extract, use_pretrained=True)

# Print the model we just instantiated
#print(model_ft) 



data_transforms = {
  'train': transforms.Compose([
    transforms.RandomResizedCrop(input_size),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
  ]),
  'val': transforms.Compose([
    transforms.Resize(input_size),
    transforms.CenterCrop(input_size),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
  ]),
}

print("Initializing Datasets and Dataloaders...")


# Create training and validation datasets
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
# Create training and validation dataloaders
dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=4) for x in ['train', 'val']}

# Detect if we have a GPU available
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")

#we='/home/dell/Desktop/dj/inception_050.pth'
#model_ft.load_state_dict(torch.load(we))#diaoyong
# Send the model to GPU
model_ft = model_ft.to(device)

params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:
  params_to_update = []
  for name,param in model_ft.named_parameters():
    if param.requires_grad == True:
      params_to_update.append(param)
      print("\t",name)
else:
  for name,param in model_ft.named_parameters():
    if param.requires_grad == True:
      print("\t",name)

# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(params_to_update, lr=0.01, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
#exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=30, gamma=0.95)

# Setup the loss fxn
criterion = nn.CrossEntropyLoss()
print(model_ft)
# Train and evaluate
model_ft, hist = train_model(model_ft, dataloaders_dict, criterion, optimizer_ft, num_epochs=num_epochs, is_inception=False)

以上这篇关于ResNeXt网络的pytorch实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
一篇不错的Python入门教程
Feb 08 Python
python 判断一个进程是否存在
Apr 09 Python
尝试使用Python多线程抓取代理服务器IP地址的示例
Nov 09 Python
python实现简单购物商城
May 21 Python
python用Pygal如何生成漂亮的SVG图像详解
Feb 10 Python
浅谈Python用QQ邮箱发送邮件时授权码的问题
Jan 29 Python
Python 实现域名解析为ip的方法
Feb 14 Python
python 通过可变参数计算n个数的乘积方法
Jun 13 Python
python-docx文件定位读取过程(尝试替换)
Feb 13 Python
keras实现VGG16 CIFAR10数据集方式
Jul 07 Python
关于Python错误重试方法总结
Jan 03 Python
Python 匹配文本并在其上一行追加文本
May 11 Python
Python属性和内建属性实例解析
Jan 14 #Python
Python程序控制语句用法实例分析
Jan 14 #Python
dpn网络的pytorch实现方式
Jan 14 #Python
Django之form组件自动校验数据实现
Jan 14 #Python
简单了解python filter、map、reduce的区别
Jan 14 #Python
Python vtk读取并显示dicom文件示例
Jan 13 #Python
Python解析多帧dicom数据详解
Jan 13 #Python
You might like
Window 7/XP 安装Apache 2.4与PHP 5.4 的过程详解
2013/06/02 PHP
Win下如何安装PHP的APC拓展
2013/08/07 PHP
php 模拟 asp.net webFrom 按钮提交事件的思路及代码
2013/12/02 PHP
php删除数组元素示例分享
2014/02/17 PHP
PHP开发微信支付的代码分享
2014/05/25 PHP
PHP可变变量学习小结
2015/11/29 PHP
详解PHP编码转换函数应用技巧
2016/10/22 PHP
PHP连接MySQL数据库的三种方式实例分析【mysql、mysqli、pdo】
2019/11/04 PHP
Jquery多选框互相内容交换的实例代码
2013/07/04 Javascript
js遍历子节点子元素附属性及方法
2014/08/19 Javascript
js获取input长度并根据页面宽度设置其大小及居中对齐
2014/08/22 Javascript
Javascript中replace()小结
2015/09/30 Javascript
js中substring和substr两者区别和使用方法
2015/11/09 Javascript
JS ES6中setTimeout函数的执行上下文示例
2017/04/27 Javascript
详解通过JSON数据使用VUE.JS
2017/05/26 Javascript
vue.js语法及常用指令
2017/10/29 Javascript
基于滚动条位置判断的简单实例
2017/12/14 Javascript
Vue-cli Eslint在vscode里代码自动格式化的方法
2018/02/23 Javascript
jQuery实现每日秒杀商品倒计时功能
2019/09/06 jQuery
微信提示 在浏览器打开 效果实现过程解析
2019/09/10 Javascript
详解实现vue的数据响应式原理
2021/01/20 Vue.js
在DigitalOcean的服务器上部署flaskblog应用
2015/12/19 Python
老生常谈python之鸭子类和多态
2017/06/13 Python
Python3下错误AttributeError: ‘dict’ object has no attribute’iteritems‘的分析与解决
2017/07/06 Python
利用Python将时间或时间间隔转为ISO 8601格式方法示例
2017/09/05 Python
基于python(urlparse)模板的使用方法总结
2017/10/13 Python
urllib和BeautifulSoup爬取维基百科的词条简单实例
2018/01/17 Python
pytorch 彩色图像转灰度图像实例
2020/01/13 Python
基于python判断字符串括号是否闭合{}[]()
2020/09/21 Python
加拿大时尚少女服装品牌:Garage
2016/10/10 全球购物
机械制造专业个人的自我评价
2013/12/28 职场文书
街道党工委党的群众路线教育实践活动对照检查材料思想汇报
2014/10/05 职场文书
五年级学生评语大全
2014/12/26 职场文书
2015年教师节贺卡寄语
2015/03/24 职场文书
2016幼儿园新学期寄语
2015/12/03 职场文书
建国70周年的心得体会(2篇)
2019/09/20 职场文书