Python 数据结构之十大经典排序算法一文通关


Posted in Python onOctober 16, 2021

一文搞掂十大经典排序算法

今天整理一下十大经典排序算法。

1、冒泡排序

——越小的元素会经由交换慢慢“浮”到数列的顶端

算法演示

Python 数据结构之十大经典排序算法一文通关

算法步骤

  • 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
  • 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
  • 针对所有的元素重复以上的步骤,除了最后一个;
  • 重复步骤1~3,直到排序完成。

算法实现

def bubbleSort(arr):
    for i in range(1, len(arr)):
        for j in range(0, len(arr)-i):
            if arr[j] > arr[j+1]:
                arr[j], arr[j + 1] = arr[j + 1], arr[j]
    return arr

2、选择排序

—— 最小的出来排第一,第二小的出来排第二…

算法演示

Python 数据结构之十大经典排序算法一文通关

算法步骤

  • 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。
  • 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
  • 重复第二步,直到所有元素均排序完毕。

算法实现

def selectionSort(arr):
    for i in range(len(arr) - 1):
        # 记录最小数的索引
        minIndex = i
        for j in range(i + 1, len(arr)):
            if arr[j] < arr[minIndex]:
                minIndex = j
        # i 不是最小数时,将 i 和最小数进行交换
        if i != minIndex:
            arr[i], arr[minIndex] = arr[minIndex], arr[i]
    return arr

3、简单插入排序

——通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

算法演示

Python 数据结构之十大经典排序算法一文通关

算法步骤

  • 从第一个元素开始,该元素可以认为已经被排序;
  • 取出下一个元素,在已经排序的元素序列中从后向前扫描;
  • 如果该元素(已排序)大于新元素,将该元素移到下一位置;
  • 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
  • 将新元素插入到该位置后;重复步骤2~5。

算法实现

def insertionSort(arr):
    for i in range(len(arr)):
        preIndex = i-1
        current = arr[i]
        while preIndex >= 0 and arr[preIndex] > current:
            arr[preIndex+1] = arr[preIndex]
            preIndex-=1
        arr[preIndex+1] = current
    return arr

4、希尔排序

——希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。

算法演示

Python 数据结构之十大经典排序算法一文通关

算法步骤

  • 选择一个增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;
  • 按增量序列个数 k,对序列进行 k 趟排序;
  • 每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

算法实现

def shellSort(arr):
    import math
    gap=1
    while(gap < len(arr)/3):
        gap = gap*3+1
    while gap > 0:
        for i in range(gap,len(arr)):
            temp = arr[i]
            j = i-gap
            while j >=0 and arr[j] > temp:
                arr[j+gap]=arr[j]
                j-=gap
            arr[j+gap] = temp
        gap = math.floor(gap/3)
    return arr

5、归并排序

——建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

算法演示

Python 数据结构之十大经典排序算法一文通关

算法步骤

  • 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
  • 设定两个指针,最初位置分别为两个已经排序序列的起始位置;
  • 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;
  • 重复步骤 3 直到某一指针达到序列尾;
  • 将另一序列剩下的所有元素直接复制到合并序列尾。

算法实现

def mergeSort(arr):
    import math
    if(len(arr)<2):
        return arr
    middle = math.floor(len(arr)/2)
    left, right = arr[0:middle], arr[middle:]
    return merge(mergeSort(left), mergeSort(right))

def merge(left,right):
    result = []
    while left and right:
        if left[0] <= right[0]:
            result.append(left.pop(0))
        else:
            result.append(right.pop(0));
    while left:
        result.append(left.pop(0))
    while right:
        result.append(right.pop(0));
    return result

6、快速排序

——快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。 快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法。

算法演示

Python 数据结构之十大经典排序算法一文通关

算法步骤

  • 从数列中挑出一个元素,称为 “基准”(pivot);
  • 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
  • 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;

算法实现

def quickSort(arr, left=None, right=None):
    left = 0 if not isinstance(left,(int, float)) else left
    right = len(arr)-1 if not isinstance(right,(int, float)) else right
    if left < right:
        partitionIndex = partition(arr, left, right)
        quickSort(arr, left, partitionIndex-1)
        quickSort(arr, partitionIndex+1, right)
    return arr

def partition(arr, left, right):
    pivot = left
    index = pivot+1
    i = index
    while  i <= right:
        if arr[i] < arr[pivot]:
            swap(arr, i, index)
            index+=1
        i+=1
    swap(arr,pivot,index-1)
    return index-1

def swap(arr, i, j):
    arr[i], arr[j] = arr[j], arr[i]

7、堆排序

——利用堆这种数据结构所设计的一种排序算法

算法演示

Python 数据结构之十大经典排序算法一文通关

算法步骤

  • 创建一个堆 H[0……n-1];
  • 把堆首(最大值)和堆尾互换;
  • 把堆的尺寸缩小 1,并调用 shift_down(0),目的是把新的数组顶端数据调整到相应位置;
  • 重复步骤 2,直到堆的尺寸为 1。

算法实现

def buildMaxHeap(arr):
    import math
    for i in range(math.floor(len(arr)/2),-1,-1):
        heapify(arr,i)

def heapify(arr, i):
    left = 2*i+1
    right = 2*i+2
    largest = i
    if left < arrLen and arr[left] > arr[largest]:
        largest = left
    if right < arrLen and arr[right] > arr[largest]:
        largest = right

    if largest != i:
        swap(arr, i, largest)
        heapify(arr, largest)

def swap(arr, i, j):
    arr[i], arr[j] = arr[j], arr[i]

def heapSort(arr):
    global arrLen
    arrLen = len(arr)
    buildMaxHeap(arr)
    for i in range(len(arr)-1,0,-1):
        swap(arr,0,i)
        arrLen -=1
        heapify(arr, 0)
    return arr

8、计数排序

——作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

算法演示

Python 数据结构之十大经典排序算法一文通关

算法步骤

  • 找出待排序的数组中最大和最小的元素
  • 统计数组中每个值为i的元素出现的次数,存入数组C的第i项
  • 对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加)
  • 反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1

算法实现

def countingSort(arr, maxValue):
    bucketLen = maxValue+1
    bucket = [0]*bucketLen
    sortedIndex =0
    arrLen = len(arr)
    for i in range(arrLen):
        if not bucket[arr[i]]:
            bucket[arr[i]]=0
        bucket[arr[i]]+=1
    for j in range(bucketLen):
        while bucket[j]>0:
            arr[sortedIndex] = j
            sortedIndex+=1
            bucket[j]-=1
    return arr

9、桶排序

——桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。

算法演示

Python 数据结构之十大经典排序算法一文通关

算法步骤

  • 设置一个定量的数组当作空桶;
  • 遍历输入数据,并且把数据一个一个放到对应的桶里去;
  • 对每个不是空的桶进行排序;
  • 从不是空的桶里把排好序的数据拼接起来。

算法实现

function bucketSort(arr, bucketSize) {
    if (arr.length === 0) {
      return arr;
    }
 
    var i;
    var minValue = arr[0];
    var maxValue = arr[0];
    for (i = 1; i < arr.length; i++) {
      if (arr[i] < minValue) {
          minValue = arr[i];                // 输入数据的最小值
      } else if (arr[i] > maxValue) {
          maxValue = arr[i];                // 输入数据的最大值
      }
    }
 
    // 桶的初始化
    var DEFAULT_BUCKET_SIZE = 5;            // 设置桶的默认数量为5
    bucketSize = bucketSize || DEFAULT_BUCKET_SIZE;
    var bucketCount = Math.floor((maxValue - minValue) / bucketSize) + 1;  
    var buckets = new Array(bucketCount);
    for (i = 0; i < buckets.length; i++) {
        buckets[i] = [];
    }
 
    // 利用映射函数将数据分配到各个桶中
    for (i = 0; i < arr.length; i++) {
        buckets[Math.floor((arr[i] - minValue) / bucketSize)].push(arr[i]);
    }
 
    arr.length = 0;
    for (i = 0; i < buckets.length; i++) {
        insertionSort(buckets[i]);                      // 对每个桶进行排序,这里使用了插入排序
        for (var j = 0; j < buckets[i].length; j++) {
            arr.push(buckets[i][j]);                     
        }
    }
 
    return arr;
}

10、基数排序

基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序。最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。

算法演示

Python 数据结构之十大经典排序算法一文通关

算法步骤

  • 取得数组中的最大数,并取得位数;
  • arr为原始数组,从最低位开始取每个位组成radix数组;
  • 对radix进行计数排序(利用计数排序适用于小范围数的特点);

算法实现

var counter = [];
function radixSort(arr, maxDigit) {
    var mod = 10;
    var dev = 1;
    for (var i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {
        for(var j = 0; j < arr.length; j++) {
            var bucket = parseInt((arr[j] % mod) / dev);
            if(counter[bucket]==null) {
                counter[bucket] = [];
            }
            counter[bucket].push(arr[j]);
        }
        var pos = 0;
        for(var j = 0; j < counter.length; j++) {
            var value = null;
            if(counter[j]!=null) {
                while ((value = counter[j].shift()) != null) {
                      arr[pos++] = value;
                }
          }
        }
    }
    return arr;
}

到此这篇关于Python 数据结构之十大经典排序算法一文通关的文章就介绍到这了,更多相关Python 排序算法内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python中基本的日期时间处理的学习教程
Oct 16 Python
详解 Python 与文件对象共事的实例
Sep 11 Python
Python获取昨天、今天、明天开始、结束时间戳的方法
Jun 01 Python
解决python中无法自动补全代码的问题
Dec 04 Python
pandas求两个表格不相交的集合方法
Dec 08 Python
Python基础教程之异常详解
Jan 10 Python
Python爬虫——爬取豆瓣电影Top250代码实例
Apr 17 Python
python命令行参数用法实例分析
Jun 25 Python
Python基础之字符串操作常用函数集合
Feb 09 Python
python实现图片转换成素描和漫画格式
Aug 19 Python
python 中[0]*2与0*2的区别说明
May 10 Python
详解Python内置模块Collections
Mar 22 Python
Python 的 sum() Pythonic 的求和方法详细
Oct 16 #Python
为了顺利买到演唱会的票用Python制作了自动抢票的脚本
Python 游戏大作炫酷机甲闯关游戏爆肝数千行代码实现案例进阶
Python实现老照片修复之上色小技巧
Python anaconda安装库命令详解
Python爬虫入门案例之爬取去哪儿旅游景点攻略以及可视化分析
Python爬虫入门案例之爬取二手房源数据
You might like
星际实力自我测试
2020/03/04 星际争霸
php设计模式 Bridge (桥接模式)
2011/06/26 PHP
用PHP代替JS玩转DOM的思路及示例代码
2014/06/15 PHP
PHP按一定比例压缩图片的方法
2018/10/12 PHP
推荐一些非常不错的javascript学习资源站点
2007/08/29 Javascript
JavaScript中null与undefined分析
2009/07/25 Javascript
页面右下角弹出提示框示例代码js版
2013/08/02 Javascript
JS中怎样判断undefined(比较不错的方法)
2014/03/27 Javascript
直接在JS里创建JSON数据然后遍历使用
2014/07/25 Javascript
Google 地图事件实例讲解
2016/08/06 Javascript
vue.js入门教程之计算属性
2016/09/01 Javascript
JQuery学习总结【二】
2016/12/01 Javascript
jquery实现文本框的禁用和启用
2016/12/07 Javascript
AngularJS中run方法的巧妙运用
2017/01/04 Javascript
基于Bootstrap的网页设计实例
2017/03/01 Javascript
js获取元素的偏移量offset简单方法(必看)
2017/07/05 Javascript
详解Node项目部署到云服务器上
2017/07/12 Javascript
浅谈layui 数据表格前后台传值的问题
2019/09/12 Javascript
封装一下vue中的axios示例代码详解
2020/02/16 Javascript
python实现批量转换文件编码(批转换编码示例)
2014/01/23 Python
利用Python实现颜色色值转换的小工具
2016/10/27 Python
Python 装饰器深入理解
2017/03/16 Python
python socket网络编程之粘包问题详解
2018/04/28 Python
python调用java的jar包方法
2018/12/15 Python
Python (Win)readline和tab补全的安装方法
2019/08/27 Python
Python hashlib常见摘要算法详解
2020/01/13 Python
python闭包、深浅拷贝、垃圾回收、with语句知识点汇总
2020/03/11 Python
HTML5 body设置全屏背景图片的示例代码
2020/12/08 HTML / CSS
Vilebrequin美国官方网上商店:法国豪华泳装品牌
2020/02/22 全球购物
欧姆龙医疗欧洲有限公司:Omron Healthcare Europe B.V
2020/06/13 全球购物
机电一体化专业应届本科生求职信
2013/09/27 职场文书
高中生的自我评价
2014/03/04 职场文书
《学棋》教后反思
2014/04/14 职场文书
转让协议书范本
2014/04/15 职场文书
领导干部作风建设总结
2014/10/23 职场文书
redis客户端实现高可用读写分离的方式详解
2021/07/04 Redis