详谈javascript精度问题与调整


Posted in Javascript onJuly 08, 2017

一个经典的问题:

0.1+0.2==0.3

答案是:false

因为:0.1+0.2=0.30000000000000004

第一次看到这个结果就是无比惊讶,下巴碰到地上,得深入了解下问题出在哪里,该怎么去调整。

产生问题的原因

在JS中数值类型就只有number类型,没有int,float,double之分,number类型实际上存储的就是IEEE754标准的浮点数,计算规则也是。

在表达式计算前,先要按照标准将两个数转成浮点数。

IEEE 754规定:

1.32位的浮点数(单精度),最高的1位是符号位S,接着的8位是指数E,剩下的23位为有效数字M。

浮点数的表现形式:

x=(-1)^S*m*2^(e+127)

m=1.M

E=e+127

2.64位的浮点数(双精度),最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。

浮点数的表现形式:

x=(-1)^S*m*2^(e+1023)

m=1.M

E=e+1023

我们就按照双精度浮点数的标准转一下看看。

首先按照规则将0.1转成二进制的浮点数。

0.1*2=0.2 //0
0.2*2=0.4 //00
0.4*2=0.8 //000
0.8*2=1.6 //0001
0.6*2=1.2 //00011
0.2*2=0.4 //000110
0.4*2=0.8 //0001100
0.8*2=1.6 //00011001
0.6*2=1.2 //000110011
0.2*2=0.4 //0001100110
0.4*2=0.8 //00011001100
0.8*2=1.6 //000110011001
0.6*2=1.2 //0001100110011
0.2*2=0.4 //00011001100110
0.4*2=0.8 //000110011001100
0.8*2=1.6 //0001100110011001
0.6*2=1.2 //00011001100110011
//省略

在转换中,会发现小数位的二进制值在不停的重复,转换没完没了了,因为乘不尽啊,不是10的倍数。

转换也不可能一直重复下去,按照标准规格化的要求凑满。

转换结果:

0.00011001100110011001100110011001100110011001100110011001

精度问题产生的第一个原因就在这里诞生了,按照标准算出来的二进制浮点数并不能都精确的表示一个小数,只是无限近似,0.5可以,因为5是10的倍数,转出来的小数位二进制不会重复。

我们看看再转回小数会怎么样,按照公式写成:

0*2^-1 + 0*2^-2 + 0*2^-3 + 1*2^-4 + 1*2^-5 + 0*2^-6 + 0*2^-7 + 1*2^-8 + 1*2^-9 + 0*2^-10 + 0*2^-11 + 1*2^-12 + 1*2^-13 + 0*2^-14 + 0*2^-15 + 1*2^-16 + 1*2^-17 + 0*2^-18 + 0*2^-19 + 1*2^-20 + 1*2^-21 + 0*2^-22 + 0*2^-23 + 1*2^-24 + 1*2^-25 + 0*2^-26 + 0*2^-27 + 1*2^-28 + 1*2^-29 + 0*2^-30 + 0*2^-31 + 1*2^-32 + 1*2^-33 + 0*2^-34 + 0*2^-35 + 1*2^-36 + 1*2^-37 + 0*2^-38 + 0*2^-39 + 1*2^-40 + 1*2^-41 + 0*2^-42 + 0*2^-43 + 1*2^-44 + 1*2^-45 + 0*2^-46 + 0*2^-47 + 1*2^-48 + 1*2^-49 + 0*2^-50 + 0*2^-51 + 1*2^-52 + 1*2^-53 + 0*2^-54 + 0*2^-55 + 1*2^-56

计算结果:

0.09999999999999999167332731531133

精度就在这里丢了一次。就是转换成小数位的二进制的时候。

按照表现形式的要求,要写成x=(-1)^s*m*2^(e+1023),m=1.M的格式,按照要求尾数m的左边最高位总是1,所以要上面小数二进制结果的小数点进行移动

移动前:

0.00011001100110011001100110011001100110011001100110011001

移动后:

1.1001100110011001100110011001100110011001100110011001*2^-4

小数点右边选取要求的52位,上面的结果因为是提前算好,所以就省略了截取工作。

因为小数点最左侧的最高位总是1,所以它是不用存储的,那么虽然存储的是52位,但实际上可以表示53位的浮点数。

S=0,E=-4+1023=1019,m=1.M=1.1001100110011001100110011001100110011001100110011001,M=1001100110011001100110011001100110011001100110011001

浮点数表示:

x=-1^0*1.1001100110011001100110011001100110011001100110011001*2^1019

浮点数存储值(最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M):

0 ‭001111111011‬ 1001100110011001100110011001100110011001100110011001

同理0.2的IEEE754的转换后的结果:

浮点数表示:

-1^0*1.1001100110011001100110011001100110011001100110011001*2^1020

浮点数存储值(最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M):

0 ‭001111111100‬ 1001100110011001100110011001100110011001100110011001

接下来,按照IEEE754的加法规则,运算过程为:

1.0操作数的检查。

2.比较阶码大小并对阶。

3.尾数进行加法运算。

4.结果规格化。

5.舍入处理。

6.溢出处理。

按照计算过程,结果规格化、舍入处理、溢出处理都会遭成精度问题。

总结来看,造成精度问题的环节:

1.小数向二进制转换。

2.运算过程中的规格化,舍入、溢出处理。

精度调整

两种方法可以进行调整。

1.使用toFixed函数对小数位进行四舍五入。

但是其返回值是字符串,其参数是0 ~ 20之间的值,需要注意。

(0.1+0.2).toFixed(1) // '0.3'

2.无小数运算,运算结果附上小数点

使用该方法,要注意因为要变成整数再计算,对于一个小数点后位数很多的数来运算的时候,要注意溢出。

//加
function add(arg1,arg2){ 
 var digits1,digits2,maxDigits; 
 try{digits1=arg1.toString().split(".")[1].length}catch(e){digits1=0} 
 try{digits2=arg2.toString().split(".")[1].length}catch(e){digits2=0} 
 maxDigits=Math.pow(10,Math.max(digits1,digits2)) 
 return (arg1*maxDigits+arg2*maxDigits)/maxDigits 
} 
 
//减
function sub(arg1,arg2){ 
 var digits1,digits2,maxDigits; 
 try{digits1=arg1.toString().split(".")[1].length}catch(e){digits1=0} 
 try{digits2=arg2.toString().split(".")[1].length}catch(e){digits2=0} 
 maxDigits=Math.pow(10,Math.max(digits1,digits2)); 
 return (arg1*maxDigits-arg2*maxDigits)/maxDigits; 
} 

//乘
function mul(arg1,arg2) { 
 var digits=0,s1=arg1.toString(),s2=arg2.toString(); 
 try{digits+=s1.split(".")[1].length}catch(e){} 
 try{digits+=s2.split(".")[1].length}catch(e){}
 return Number(s1.replace(".",""))*Number(s2.replace(".",""))/Math.pow(10,digits); 
}

//除
function div(arg1,arg2){ 
 var int1=0,int2=0,digits1,digits2; 
 try{digits1=arg1.toString().split(".")[1].length}catch(e){digits1=0} 
 try{digits2=arg2.toString().split(".")[1].length}catch(e){digits2=0} 
 
 int1=Number(arg1.toString().replace(".","")) 
 int2=Number(arg2.toString().replace(".","")) 
 return (int1/int2)*Math.pow(10,digits2-digits1); 

}

以上这篇详谈javascript精度问题与调整就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Javascript 相关文章推荐
在textarea中屏蔽js的某个function的javascript代码
Apr 20 Javascript
基于jQuery的仿flash的广告轮播代码
Nov 04 Javascript
jquery获取多个checkbox的值异步提交给php
Jul 07 Javascript
jquery实现倒计时功能
Dec 28 Javascript
js实现商品抛物线加入购物车特效
Nov 18 Javascript
JS实现一个简单的日历
Feb 22 Javascript
jquery mobile实现可折叠的导航按钮
Mar 11 Javascript
微信小程序开发教程之增加mixin扩展
Aug 09 Javascript
利用JS制作万年历的方法
Aug 16 Javascript
jQuery中 DOM节点操作方法大全
Oct 12 jQuery
JavaScript实现多叉树的递归遍历和非递归遍历算法操作示例
Feb 08 Javascript
解决vue项目使用font-awesome,build后路径的问题
Sep 01 Javascript
javascript定时器取消定时器及优化方法
Jul 08 #Javascript
Javascript 一些需要注意的细节(必看篇)
Jul 08 #Javascript
JQuery 获取Dom元素的实例讲解
Jul 08 #jQuery
深入理解jquery的$.extend()、$.fn和$.fn.extend()
Jul 08 #jQuery
浅谈jQuery框架Ajax常用选项
Jul 08 #jQuery
js中变量的连续赋值(实例讲解)
Jul 08 #Javascript
理解 javascript 中的函数表达式与函数声明
Jul 07 #Javascript
You might like
PHP+MYSQL开发工具及资源收藏
2007/01/02 PHP
php 来访国内外IP判断代码并实现页面跳转
2009/12/18 PHP
深入PHP中的HashTable结构详解
2013/06/13 PHP
整理php防注入和XSS攻击通用过滤
2015/09/13 PHP
php实现的统计字数函数定义与使用示例
2017/07/26 PHP
PHP中检查isset()和!empty()函数的必要性
2019/02/13 PHP
Yii2.0框架实现带分页的多条件搜索功能示例
2019/02/20 PHP
JS 表单验证大全
2011/11/23 Javascript
jQuery对val和atrr("value")赋值的区别介绍
2014/09/26 Javascript
JavaScript中具名函数的多种调用方式总结
2014/11/08 Javascript
jquery操作对象数组元素方法详解
2014/11/26 Javascript
jQuery中:button选择器用法实例
2015/01/04 Javascript
jquery实现焦点图片随机切换效果的方法
2015/03/12 Javascript
学习JavaScript设计模式之策略模式
2016/01/12 Javascript
Treegrid的动态加载实例代码
2016/04/29 Javascript
CKEditor无法验证的解决方案(js验证+jQuery Validate验证)
2016/05/09 Javascript
JavaScript事件学习小结(三)js事件对象
2016/06/09 Javascript
有关suggest快速删除后仍然出现下拉列表的bug问题
2016/12/02 Javascript
Jqprint实现页面打印
2017/01/06 Javascript
Vue 2.0 服务端渲染入门介绍
2017/03/29 Javascript
Vue2.5 结合 Element UI 之 Table 和 Pagination 组件实现分页功能
2018/01/26 Javascript
JavaScript高阶教程之“==”隐藏下的类型转换
2019/04/11 Javascript
js计算两个时间差 天 时 分 秒 毫秒的代码
2019/05/21 Javascript
JavaScript算法学习之冒泡排序和选择排序
2019/11/02 Javascript
深入理解Python变量与常量
2016/06/02 Python
Python 实现数据结构中的的栈队列
2019/05/16 Python
Python使用微信itchat接口实现查看自己微信的信息功能详解
2019/08/22 Python
python3 webp转gif格式的实现示例
2019/12/10 Python
python cookie反爬处理的实现
2020/11/01 Python
详解前端HTML5几种存储方式的总结
2016/12/27 HTML / CSS
人民教师的自我评价分享
2014/02/21 职场文书
运动员口号
2014/06/09 职场文书
工伤私了协议书范本
2014/11/24 职场文书
董事长开业致辞
2015/07/29 职场文书
情况说明书格式及范文
2019/06/24 职场文书
pandas中DataFrame检测重复值的实现
2021/05/26 Python