记录一下安装win10+GeForce GTX1060+CUDA 9.0+cuDNN7.3+tensorflow-gpu 1.12.0+python3.5.5
之前已经安装过pycharm、Anaconda以及VS2013,因此,安装记录从此后开始
总体步骤大致如下:
1、确认自己电脑显卡型号是否支持CUDA(此处有坑)
此处有坑!不要管NVIDIA控制面板组件中显示的是CUDA9.2.148。
你下载的CUDA不一定需要匹配,尤其是CUDA9.2,最好使用CUDA9.0,我就在此坑摔的比较惨。
2、下载CUDA以及cuDNN,注意版本对应①查看版本匹配:
②查看TensorFlow和Keras版本:
import tensorflow as tf from tensorflow.keras import layers print(tf.VERSION) print(tf.keras.__version__)
输出:
1.12.0
2.1.6-tf
7、在pycharm中调用tensorflow,
并查验tensorflow是否能够调用gpu做运算
①在PyCharm中新建Project
②进入中Existing interpreter右侧浏览目录
③在Interpreter右侧浏览目录中找到自己安装Anaconda的路径,在其中的envs文件夹中,有上文中自己创建的tensorflow-gpu环境,选中其中python.exe即可。
④在pycharm中查验tensorflow是否能够调用gpu做运算查验tensorflow是否能够调用gpu做运算:
创建一个.py文件,用TensorFlow,来比较一下CPU和GPU的时间差异:
例子来源:https://zhuanlan.zhihu.com/p/58607298
import tensorflow as tf import timeit import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # See https://www.tensorflow.org/tutorials/using_gpu#allowing_gpu_memory_growth config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.device('/cpu:0'): random_image_cpu = tf.random_normal((100, 1000, 100, 3)) net_cpu = tf.layers.conv2d(random_image_cpu, 32, 7) net_cpu = tf.reduce_sum(net_cpu) with tf.device('/gpu:0'): random_image_gpu = tf.random_normal((100, 1000, 100, 3)) net_gpu = tf.layers.conv2d(random_image_gpu, 32, 7) net_gpu = tf.reduce_sum(net_gpu) sess = tf.Session(config=config) # Test execution once to detect errors early. try: sess.run(tf.global_variables_initializer()) except tf.errors.InvalidArgumentError: print( '如果出了这个Error表示GPU配置不成功!\n\n') raise def cpu(): sess.run(net_cpu) def gpu(): sess.run(net_gpu) # Runs the op several times. print('Time (s) to convolve 32x7x7x3 filter over random 100x1000x100x3 images ' '(batch x height x width x channel). Sum of ten runs.') print('CPU (s):') cpu_time = timeit.timeit('cpu()', number=10, setup="from __main__ import cpu") print(cpu_time) print('GPU (s):') gpu_time = timeit.timeit('gpu()', number=10, setup="from __main__ import gpu") print(gpu_time) print('GPU speedup over CPU: {}x'.format(int(cpu_time / gpu_time))) sess.close()
输出:
Time (s) to convolve 32x7x7x3 filter over random 100x1000x100x3 images (batch x height x width x channel). Sum of ten runs.
CPU (s):
25.24234085335886
GPU (s):
1.5711942943447745
GPU speedup over CPU: 16x
输出表明:这个任务GPU和6个i7的CPU相比快了16倍!
安装踩坑总结:
其中最大的坑就是CUDA、cuDNN、tensorflow-gpu以及python版本之间的匹配了。有时候明明按照官方的版本匹配列表安装,也是不行。
安装之后如果出现“ImportError: DLL load failed: 找不到指定的模块”错误,一般问题都是出在了版本不匹配上。
最需要注意的是CUDA9.2 。最初在NVIDIA控制面板,显示我的显卡支持CUDA 9.2.148,因此我按照推荐列表,选择tensorflow-gpu1.12.0+cuDNN 7.5.0.56+CUDA 9.2.148 +python3.5.5。注意此处有坑!!无论如何都是安装不成功,一直都是“ImportError: DLL load failed: 找不到指定的模块”这个错误。
后来看到有网友说,推荐列表中只给出CUDA版本号 的第一位,一般使用的都是CUDA9.0或者CUDA10.0,后面版本可能会出现不兼容。
于是,卸载CUDA9.2(不要管NVIDIA控制面板组件中显示的是CUDA9.2.148,不一定需要匹配),重新在推荐列表中寻找匹配的cuDNN以及tensorflow-gpu版本,最后成功安装。
总结
到此这篇关于TensorFlow的环境配置与安装教程详解(win10+GeForce GTX1060+CUDA 9.0+cuDNN7.3+tensorflow-gpu 1.12.0+python3.5.5)的文章就介绍到这了,更多相关TensorFlow环境配置与安装内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!
TensorFlow的环境配置与安装教程详解(win10+GeForce GTX1060+CUDA 9.0+cuDNN7.3+tensorflow-gpu 1.12.0+python3.5.5)
- Author -
ch206265声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@