Python使用plotly绘制数据图表的方法


Posted in Python onJuly 18, 2017

导语:使用 python-plotly 模块来进行压测数据的绘制,并且生成静态 html 页面结果展示。

不少小伙伴在开发过程中都有对模块进行压测的经历,压测结束后大家往往喜欢使用Excel处理压测数据并绘制数据可视化视图,但这样不能很方便的使用web页面进行数据展示。本文将介绍使用python-plotly模块来进行压测数据的绘制,并且生成静态html页面方便结果展示。

Plotly简介

Plotly是一款使用JavaScript开发的制图工具,提供了与主流数据分析语言交互的API(如:Python, R, MATLAB)。大家可以到官网 https://plot.ly/ 了解更多详细的信息。Plotly能够绘制具有用户交互功能的精美图表。

Python使用plotly绘制数据图表的方法

Python-Plotly 安装

本文档主要是介绍使用plotly的Python API来进行几种简单图表的绘制,更多Plotly的用法请参考 https://plot.ly/python/

Python-Plotly可以使用pip安装,并且最好在Python2.7版本及以上安装使用,如果使用Python2.6版本,请自行安装Python2.7和对应的pip。

Plotly绘图实例

line-plots

绘图效果:

生成的html页面在右上角提供了丰富的交互工具。

Python使用plotly绘制数据图表的方法

代码:

def line_plots(name):
  '''
  绘制普通线图
  '''
  #数据,x为横坐标,y,z为纵坐标的两项指标,三个array长度相同
  dataset = {'x':[0,1,2,3,4,5,6,7,8,9],
        'y':[5,4,1,3,11,2,6,7,19,20],
        'z':[12,9,0,0,3,25,8,17,22,5]}
  data_g = []
  #分别插入 y, z
  tr_x = Scatter(
    x = dataset['x'],
    y = dataset['y'],
    name = 'y' 
  )
  data_g.append(tr_x)
  tr_z = Scatter(
    x = dataset['x'],
    y = dataset['z'],
    name = 'z' 
  )
  data_g.append(tr_z)
  #设置layout,指定图表title,x轴和y轴名称
  layout = Layout(title="line plots", xaxis={'title':'x'}, yaxis={'title':'value'})
  #将layout设置到图表
  fig = Figure(data=data_g, layout=layout)
  #绘图,输出路径为name参数指定
  pltoff.plot(fig, filename=name)

scatter-plots

绘图效果:

Python使用plotly绘制数据图表的方法

代码:

def scatter_plots(name):
  '''
  绘制散点图
  '''
  dataset = {'x':[0,1,2,3,4,5,6,7,8,9],
        'y':[5,4,1,3,11,2,6,7,19,20],
        'text':['5_txt','4_txt','1_txt','3_txt','11_txt','2_txt','6_txt','7_txt','19_txt','20_txt']}

  data_g = []

  tr_x = Scatter(
    x = dataset['x'],
    y = dataset['y'],
    text = dataset['text'],
    textposition='top center',
    mode='markers+text',
    name = 'y' 
  )
  data_g.append(tr_x)

  layout = Layout(title="scatter plots", xaxis={'title':'x'}, yaxis={'title':'value'})
  fig = Figure(data=data_g, layout=layout)
  pltoff.plot(fig, filename=name)

bar-charts

绘图效果:

Python使用plotly绘制数据图表的方法

代码:

def bar_charts(name):
  '''
  绘制柱状图
  '''
  dataset = {'x':['Windows', 'Linux', 'Unix', 'MacOS'],
        'y1':[45, 26, 37, 13],
        'y2':[19, 27, 33, 21]}
  data_g = []
  tr_y1 = Bar(
    x = dataset['x'],
    y = dataset['y1'],
    name = 'v1'
  )
  data_g.append(tr_y1)

  tr_y2 = Bar(
    x = dataset['x'],
    y = dataset['y2'],
    name = 'v2'
  )
  data_g.append(tr_y2)
  layout = Layout(title="bar charts", xaxis={'title':'x'}, yaxis={'title':'value'})
  fig = Figure(data=data_g, layout=layout)
  pltoff.plot(fig, filename=name)

pie-charts

绘图效果:

Python使用plotly绘制数据图表的方法

代码:

def pie_charts(name):
  '''
  绘制饼图
  '''
  dataset = {'labels':['Windows', 'Linux', 'Unix', 'MacOS', 'Android', 'iOS'],
        'values':[280, 25, 10, 100, 250, 270]} 
  data_g = []
  tr_p = Pie(
    labels = dataset['labels'],
    values = dataset['values']
  )
  data_g.append(tr_p)
  layout = Layout(title="pie charts")
  fig = Figure(data=data_g, layout=layout)
  pltoff.plot(fig, filename=name)

filled-area-plots

本例是绘制具有填充效果的堆叠线图,适合分析具有堆叠百分比属性的数据

绘图效果:

Python使用plotly绘制数据图表的方法

代码:

def filled_area_plots(name):
  '''
  绘制堆叠填充的线图
  '''
  dataset = {'x':[0,1,2,3,4,5,6,7,8,9],
        'y1':[5,4,1,3,11,2,6,7,19,20],
        'y2':[12,9,0,0,3,25,8,17,22,5],
        'y3':[13,22,46,1,15,4,18,11,17,20]}

  #计算y1,y2,y3的堆叠占比
  dataset['y1_stack'] = dataset['y1']
  dataset['y2_stack'] = [y1+y2 for y1, y2 in zip(dataset['y1'], dataset['y2'])]
  dataset['y3_stack'] = [y1+y2+y3 for y1, y2, y3 in zip(dataset['y1'], dataset['y2'], dataset['y3'])]

  dataset['y1_text'] = ['%s(%s%%)'%(y1, y1*100/y3_s) for y1, y3_s in zip(dataset['y1'], dataset['y3_stack'])]
  dataset['y2_text'] = ['%s(%s%%)'%(y2, y2*100/y3_s) for y2, y3_s in zip(dataset['y2'], dataset['y3_stack'])]
  dataset['y3_text'] = ['%s(%s%%)'%(y3, y3*100/y3_s) for y3, y3_s in zip(dataset['y3'], dataset['y3_stack'])]

  data_g = []
  tr_1 = Scatter(
    x = dataset['x'],
    y = dataset['y1_stack'],
    text = dataset['y1_text'],
    hoverinfo = 'x+text',
    mode = 'lines',
    name = 'y1', 
    fill = 'tozeroy' #填充方式: 到x轴
  )
  data_g.append(tr_1)

  tr_2 = Scatter(
    x = dataset['x'],
    y = dataset['y2_stack'],
    text = dataset['y2_text'],
    hoverinfo = 'x+text',
    mode = 'lines',
    name = 'y2', 
    fill = 'tonexty' #填充方式:到下方的另一条线
  )
  data_g.append(tr_2)

  tr_3 = Scatter(
    x = dataset['x'],
    y = dataset['y3_stack'],
    text = dataset['y3_text'],
    hoverinfo = 'x+text',
    mode = 'lines',
    name = 'y3',
    fill = 'tonexty'
  )
  data_g.append(tr_3)

  layout = Layout(title="field area plots", xaxis={'title':'x'}, yaxis={'title':'value'})
  fig = Figure(data=data_g, layout=layout)
  pltoff.plot(fig, filename=name)

小结

本文介绍了利用python-plotly绘制数据图的方法,实例中 线图(line plots)、散点图(scatter plots)、柱状图(bar charts)、饼图(pie charts)以及填充堆叠线图(filled area plots)这五种典型的图表基本上涵盖了大部分类型的测试数据,各位小伙伴可以加以变形绘制出更多的漂亮图标。

文中所示代码:test_plotly_3water.rar

参考资料

1. https://plot.ly/python/basic-charts/

2. https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python的gevent框架的入门教程
Apr 29 Python
Python的装饰器模式与面向切面编程详解
Jun 21 Python
浅谈python内置变量-reversed(seq)
Jun 21 Python
Python爬虫爬取一个网页上的图片地址实例代码
Jan 16 Python
Python cookbook(数据结构与算法)实现优先级队列的方法示例
Feb 18 Python
Python中flatten( )函数及函数用法详解
Nov 02 Python
对Python实现累加函数的方法详解
Jan 23 Python
python 使用pygame工具包实现贪吃蛇游戏(多彩版)
Oct 30 Python
Python算法的时间复杂度和空间复杂度(实例解析)
Nov 19 Python
基于Python计算圆周率pi代码实例
Mar 25 Python
python利用faker库批量生成测试数据
Oct 15 Python
Python list去重且保持原顺序不变的方法
Apr 03 Python
python中日志logging模块的性能及多进程详解
Jul 18 #Python
浅谈python中的__init__、__new__和__call__方法
Jul 18 #Python
Pycharm编辑器技巧之自动导入模块详解
Jul 18 #Python
python对DICOM图像的读取方法详解
Jul 17 #Python
Python实现excel转sqlite的方法
Jul 17 #Python
PyChar学习教程之自定义文件与代码模板详解
Jul 17 #Python
Python实现将sqlite数据库导出转成Excel(xls)表的方法
Jul 17 #Python
You might like
如何限制访问者的ip(PHPBB的代码)
2006/10/09 PHP
一步一步学习PHP(6) 面向对象
2010/02/16 PHP
PHP数据库操作之基于Mysqli的数据库操作类库
2014/04/19 PHP
PHP防盗链代码实例
2014/08/27 PHP
完美解决Thinkphp3.2中插入相同数据的问题
2017/08/01 PHP
laravel 修改.htaccess文件 重定向public的解决方法
2019/10/12 PHP
Laravel如何实现自动加载类
2019/10/14 PHP
PHP如何开启Opcache功能提升程序处理效率
2020/04/27 PHP
js获取单选按钮的数据
2006/11/27 Javascript
实测jquery data()如何存值
2013/08/18 Javascript
js捕获鼠标滚轮事件代码
2013/12/16 Javascript
js实现可折叠展开的手风琴菜单效果
2015/09/07 Javascript
微信小程序 picker 组件详解及简单实例
2017/01/10 Javascript
Bootstrap响应式导航由768px变成992px的实现代码
2017/06/15 Javascript
JavaScript 获取元素在父节点中的下标(推荐)
2017/06/28 Javascript
three.js搭建室内场景教程
2018/12/30 Javascript
vue elementUI table表格数据 滚动懒加载的实现方法
2019/04/04 Javascript
浅析Vue中拆分视图层代码的5点建议
2019/08/15 Javascript
基于iview-admin实现动态路由的示例代码
2019/10/02 Javascript
详解Vue template 如何支持多个根结点
2020/02/10 Javascript
基于Electron实现桌面应用开发代码实例
2020/07/07 Javascript
vue实现的多页面项目如何优化打包的步骤详解
2020/07/19 Javascript
原生js实现滑块区间组件
2021/01/20 Javascript
[01:28:44]DOTA2-DPC中国联赛定级赛 RNG vs iG BO3第一场 1月10日
2021/03/11 DOTA
Python操作Mysql实例代码教程在线版(查询手册)
2013/02/18 Python
Python使用三种方法实现PCA算法
2017/12/12 Python
python定时关机小脚本
2018/06/20 Python
djang常用查询SQL语句的使用代码
2019/02/15 Python
利用django+wechat-python-sdk 创建微信服务器接入的方法
2019/02/20 Python
详解Python数据可视化编程 - 词云生成并保存(jieba+WordCloud)
2019/03/26 Python
opencv3/python 鼠标响应操作详解
2019/12/11 Python
使用Pytorch来拟合函数方式
2020/01/14 Python
纯html5+css3下拉导航菜单实现代码
2013/03/18 HTML / CSS
领先的英国注册在线药房 :Simply Meds Online
2019/03/28 全球购物
网聊搭讪开场白
2015/05/28 职场文书
MySQL transaction事务安全示例讲解
2022/06/21 MySQL