Python使用plotly绘制数据图表的方法


Posted in Python onJuly 18, 2017

导语:使用 python-plotly 模块来进行压测数据的绘制,并且生成静态 html 页面结果展示。

不少小伙伴在开发过程中都有对模块进行压测的经历,压测结束后大家往往喜欢使用Excel处理压测数据并绘制数据可视化视图,但这样不能很方便的使用web页面进行数据展示。本文将介绍使用python-plotly模块来进行压测数据的绘制,并且生成静态html页面方便结果展示。

Plotly简介

Plotly是一款使用JavaScript开发的制图工具,提供了与主流数据分析语言交互的API(如:Python, R, MATLAB)。大家可以到官网 https://plot.ly/ 了解更多详细的信息。Plotly能够绘制具有用户交互功能的精美图表。

Python使用plotly绘制数据图表的方法

Python-Plotly 安装

本文档主要是介绍使用plotly的Python API来进行几种简单图表的绘制,更多Plotly的用法请参考 https://plot.ly/python/

Python-Plotly可以使用pip安装,并且最好在Python2.7版本及以上安装使用,如果使用Python2.6版本,请自行安装Python2.7和对应的pip。

Plotly绘图实例

line-plots

绘图效果:

生成的html页面在右上角提供了丰富的交互工具。

Python使用plotly绘制数据图表的方法

代码:

def line_plots(name):
  '''
  绘制普通线图
  '''
  #数据,x为横坐标,y,z为纵坐标的两项指标,三个array长度相同
  dataset = {'x':[0,1,2,3,4,5,6,7,8,9],
        'y':[5,4,1,3,11,2,6,7,19,20],
        'z':[12,9,0,0,3,25,8,17,22,5]}
  data_g = []
  #分别插入 y, z
  tr_x = Scatter(
    x = dataset['x'],
    y = dataset['y'],
    name = 'y' 
  )
  data_g.append(tr_x)
  tr_z = Scatter(
    x = dataset['x'],
    y = dataset['z'],
    name = 'z' 
  )
  data_g.append(tr_z)
  #设置layout,指定图表title,x轴和y轴名称
  layout = Layout(title="line plots", xaxis={'title':'x'}, yaxis={'title':'value'})
  #将layout设置到图表
  fig = Figure(data=data_g, layout=layout)
  #绘图,输出路径为name参数指定
  pltoff.plot(fig, filename=name)

scatter-plots

绘图效果:

Python使用plotly绘制数据图表的方法

代码:

def scatter_plots(name):
  '''
  绘制散点图
  '''
  dataset = {'x':[0,1,2,3,4,5,6,7,8,9],
        'y':[5,4,1,3,11,2,6,7,19,20],
        'text':['5_txt','4_txt','1_txt','3_txt','11_txt','2_txt','6_txt','7_txt','19_txt','20_txt']}

  data_g = []

  tr_x = Scatter(
    x = dataset['x'],
    y = dataset['y'],
    text = dataset['text'],
    textposition='top center',
    mode='markers+text',
    name = 'y' 
  )
  data_g.append(tr_x)

  layout = Layout(title="scatter plots", xaxis={'title':'x'}, yaxis={'title':'value'})
  fig = Figure(data=data_g, layout=layout)
  pltoff.plot(fig, filename=name)

bar-charts

绘图效果:

Python使用plotly绘制数据图表的方法

代码:

def bar_charts(name):
  '''
  绘制柱状图
  '''
  dataset = {'x':['Windows', 'Linux', 'Unix', 'MacOS'],
        'y1':[45, 26, 37, 13],
        'y2':[19, 27, 33, 21]}
  data_g = []
  tr_y1 = Bar(
    x = dataset['x'],
    y = dataset['y1'],
    name = 'v1'
  )
  data_g.append(tr_y1)

  tr_y2 = Bar(
    x = dataset['x'],
    y = dataset['y2'],
    name = 'v2'
  )
  data_g.append(tr_y2)
  layout = Layout(title="bar charts", xaxis={'title':'x'}, yaxis={'title':'value'})
  fig = Figure(data=data_g, layout=layout)
  pltoff.plot(fig, filename=name)

pie-charts

绘图效果:

Python使用plotly绘制数据图表的方法

代码:

def pie_charts(name):
  '''
  绘制饼图
  '''
  dataset = {'labels':['Windows', 'Linux', 'Unix', 'MacOS', 'Android', 'iOS'],
        'values':[280, 25, 10, 100, 250, 270]} 
  data_g = []
  tr_p = Pie(
    labels = dataset['labels'],
    values = dataset['values']
  )
  data_g.append(tr_p)
  layout = Layout(title="pie charts")
  fig = Figure(data=data_g, layout=layout)
  pltoff.plot(fig, filename=name)

filled-area-plots

本例是绘制具有填充效果的堆叠线图,适合分析具有堆叠百分比属性的数据

绘图效果:

Python使用plotly绘制数据图表的方法

代码:

def filled_area_plots(name):
  '''
  绘制堆叠填充的线图
  '''
  dataset = {'x':[0,1,2,3,4,5,6,7,8,9],
        'y1':[5,4,1,3,11,2,6,7,19,20],
        'y2':[12,9,0,0,3,25,8,17,22,5],
        'y3':[13,22,46,1,15,4,18,11,17,20]}

  #计算y1,y2,y3的堆叠占比
  dataset['y1_stack'] = dataset['y1']
  dataset['y2_stack'] = [y1+y2 for y1, y2 in zip(dataset['y1'], dataset['y2'])]
  dataset['y3_stack'] = [y1+y2+y3 for y1, y2, y3 in zip(dataset['y1'], dataset['y2'], dataset['y3'])]

  dataset['y1_text'] = ['%s(%s%%)'%(y1, y1*100/y3_s) for y1, y3_s in zip(dataset['y1'], dataset['y3_stack'])]
  dataset['y2_text'] = ['%s(%s%%)'%(y2, y2*100/y3_s) for y2, y3_s in zip(dataset['y2'], dataset['y3_stack'])]
  dataset['y3_text'] = ['%s(%s%%)'%(y3, y3*100/y3_s) for y3, y3_s in zip(dataset['y3'], dataset['y3_stack'])]

  data_g = []
  tr_1 = Scatter(
    x = dataset['x'],
    y = dataset['y1_stack'],
    text = dataset['y1_text'],
    hoverinfo = 'x+text',
    mode = 'lines',
    name = 'y1', 
    fill = 'tozeroy' #填充方式: 到x轴
  )
  data_g.append(tr_1)

  tr_2 = Scatter(
    x = dataset['x'],
    y = dataset['y2_stack'],
    text = dataset['y2_text'],
    hoverinfo = 'x+text',
    mode = 'lines',
    name = 'y2', 
    fill = 'tonexty' #填充方式:到下方的另一条线
  )
  data_g.append(tr_2)

  tr_3 = Scatter(
    x = dataset['x'],
    y = dataset['y3_stack'],
    text = dataset['y3_text'],
    hoverinfo = 'x+text',
    mode = 'lines',
    name = 'y3',
    fill = 'tonexty'
  )
  data_g.append(tr_3)

  layout = Layout(title="field area plots", xaxis={'title':'x'}, yaxis={'title':'value'})
  fig = Figure(data=data_g, layout=layout)
  pltoff.plot(fig, filename=name)

小结

本文介绍了利用python-plotly绘制数据图的方法,实例中 线图(line plots)、散点图(scatter plots)、柱状图(bar charts)、饼图(pie charts)以及填充堆叠线图(filled area plots)这五种典型的图表基本上涵盖了大部分类型的测试数据,各位小伙伴可以加以变形绘制出更多的漂亮图标。

文中所示代码:test_plotly_3water.rar

参考资料

1. https://plot.ly/python/basic-charts/

2. https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
简单的python后台管理程序
Apr 13 Python
Python使用微信SDK实现的微信支付功能示例
Jun 30 Python
Pandas 对Dataframe结构排序的实现方法
Apr 10 Python
用Python将一个列表分割成小列表的实例讲解
Jul 02 Python
django模板结构优化的方法
Feb 28 Python
python利用Opencv实现人脸识别功能
Apr 25 Python
对python 树状嵌套结构的实现思路详解
Aug 09 Python
Python在OpenCV里实现极坐标变换功能
Sep 02 Python
Django框架 Pagination分页实现代码实例
Sep 04 Python
Pytorch 保存模型生成图片方式
Jan 10 Python
详解Pytorch显存动态分配规律探索
Nov 17 Python
Python基于Socket实现简易多人聊天室的示例代码
Nov 29 Python
python中日志logging模块的性能及多进程详解
Jul 18 #Python
浅谈python中的__init__、__new__和__call__方法
Jul 18 #Python
Pycharm编辑器技巧之自动导入模块详解
Jul 18 #Python
python对DICOM图像的读取方法详解
Jul 17 #Python
Python实现excel转sqlite的方法
Jul 17 #Python
PyChar学习教程之自定义文件与代码模板详解
Jul 17 #Python
Python实现将sqlite数据库导出转成Excel(xls)表的方法
Jul 17 #Python
You might like
php实例分享之mysql数据备份
2014/05/19 PHP
Thinkphp5+uploadify实现的文件上传功能示例
2018/05/26 PHP
PHP封装的page分页类定义与用法完整示例
2018/12/24 PHP
获取焦点时,利用js定时器设定时间执行动作
2010/04/02 Javascript
js中把JSON字符串转换成JSON对象最好的方法
2014/03/21 Javascript
用js的document.write输出的广告无阻塞加载的方法
2014/06/05 Javascript
javascript结合ajax读取txt文件内容
2014/12/05 Javascript
详解JavaScript中的every()方法
2015/06/08 Javascript
jquery-tips悬浮提示插件分享
2015/07/31 Javascript
javascript中html字符串转化为jquery dom对象的方法
2015/08/27 Javascript
JS实现网页上随滚动条滚动的层效果代码
2015/11/04 Javascript
浅析JavaScript函数的调用模式
2016/08/10 Javascript
详解vue-router 2.0 常用基础知识点之router-link
2017/05/10 Javascript
js学使用setTimeout实现轮循动画
2017/07/17 Javascript
jQuery实现页码跳转式动态数据分页
2017/12/31 jQuery
JS代码简洁方式之函数方法详解
2020/07/28 Javascript
jQuery实现异步上传一个或多个文件
2020/08/17 jQuery
从零学Python之入门(二)基本数据类型
2014/05/25 Python
Python实现的简单发送邮件脚本分享
2014/11/07 Python
Python中尝试多线程编程的一个简明例子
2015/04/07 Python
Python multiprocessing模块中的Pipe管道使用实例
2015/04/11 Python
Django实现的自定义访问日志模块示例
2017/06/23 Python
通过Pandas读取大文件的实例
2018/06/07 Python
python并发编程 Process对象的其他属性方法join方法详解
2019/08/20 Python
Python的pygame安装教程详解
2020/02/10 Python
CSS3系列之3D制作方法案例
2017/08/14 HTML / CSS
美国新兴城市生活方式零售商:VILLA
2017/12/06 全球购物
Perfume’s Club澳大利亚官网:西班牙领先的在线美容店
2021/02/01 全球购物
个人实用简单的自我评价
2013/10/19 职场文书
董事长职责范文
2013/11/08 职场文书
实验教师岗位职责
2014/02/13 职场文书
2015年元旦主持词结束语
2014/12/14 职场文书
如何让vue长列表快速加载
2021/03/29 Vue.js
编写python程序的90条建议
2021/04/14 Python
Redis高级数据类型Hyperloglog、Bitmap的使用
2021/05/24 Redis
Nginx location 和 proxy_pass路径配置问题小结
2021/09/04 Servers