Tensorflow实现将标签变为one-hot形式


Posted in Python onMay 22, 2020

将数据标签变为类似MNIST的one-hot编码形式

def one_hot(indices, 
 depth, 
 on_value=None, 
 off_value=None, 
 axis=None, 
 dtype=None, 
 name=None):
 """Returns a one-hot tensor.
 
 The locations represented by indices in `indices` take value 
 `on_value`,
 while all other locations take value `off_value`.
 
 `on_value` and `off_value` must have matching data types. If 
 `dtype` is also
 provided, they must be the same data type as specified by 
 `dtype`.
 
 If `on_value` is not provided, it will default to the value `1` with 
 type
 `dtype`
 
 If `off_value` is not provided, it will default to the value `0` with 
 type
 `dtype`
 
 If the input `indices` is rank `N`, the output will have rank 
 `N+1`. The
 new axis is created at dimension `axis` (default: the new axis is 
 appended
 at the end).
 
 If `indices` is a scalar the output shape will be a vector of 
 length `depth`
 
 If `indices` is a vector of length `features`, the output shape will 
 be:
 
 ```
 features x depth if axis == -1
 depth x features if axis == 0
 ```
 
 If `indices` is a matrix (batch) with shape `[batch, features]`, the 
 output
 shape will be:
 
 ```
 batch x features x depth if axis == -1
 batch x depth x features if axis == 1
 depth x batch x features if axis == 0
 ```
 
 If `dtype` is not provided, it will attempt to assume the data 
 type of
 `on_value` or `off_value`, if one or both are passed in. If none 
 of
 `on_value`, `off_value`, or `dtype` are provided, `dtype` will 
 default to the
 value `tf.float32`.
 
 Note: If a non-numeric data type output is desired (`tf.string`, 
 `tf.bool`,
 etc.), both `on_value` and `off_value` _must_ be provided to 
 `one_hot`.
 
 For example:
 
 ```python
 indices = [0, 1, 2]
 depth = 3
 tf.one_hot(indices, depth) # output: [3 x 3]
 # [[1., 0., 0.],
 # [0., 1., 0.],
 # [0., 0., 1.]]
 
 indices = [0, 2, -1, 1]
 depth = 3
 tf.one_hot(indices, depth,
 on_value=5.0, off_value=0.0,
 axis=-1) # output: [4 x 3]
 # [[5.0, 0.0, 0.0], # one_hot(0)
 # [0.0, 0.0, 5.0], # one_hot(2)
 # [0.0, 0.0, 0.0], # one_hot(-1)
 # [0.0, 5.0, 0.0]] # one_hot(1)
 
 indices = [[0, 2], [1, -1]]
 depth = 3
 tf.one_hot(indices, depth,
 on_value=1.0, off_value=0.0,
 axis=-1) # output: [2 x 2 x 3]
 # [[[1.0, 0.0, 0.0], # one_hot(0)
 # [0.0, 0.0, 1.0]], # one_hot(2)
 # [[0.0, 1.0, 0.0], # one_hot(1)
 # [0.0, 0.0, 0.0]]] # one_hot(-1)
 ```
 
 Args:
 indices: A `Tensor` of indices.
 depth: A scalar defining the depth of the one hot dimension.
 on_value: A scalar defining the value to fill in output when 
 `indices[j]
 = i`. (default: 1)
 off_value: A scalar defining the value to fill in output when 
 `indices[j]
 != i`. (default: 0)
 axis: The axis to fill (default: -1, a new inner-most axis).
 dtype: The data type of the output tensor.
 
 Returns:
 output: The one-hot tensor.
 
 Raises:
 TypeError: If dtype of either `on_value` or `off_value` don't 
 match `dtype`
 TypeError: If dtype of `on_value` and `off_value` don't match 
 one another
 """
 with ops.name_scope(name, "one_hot", 
 [indices, depth, on_value, off_value, axis, 
  dtype]) as name:
 on_exists = on_value is not None
 off_exists = off_value is not None
 on_dtype = ops.convert_to_tensor(on_value).dtype.base_dtype 
  if on_exists else None
 off_dtype = ops.convert_to_tensor(off_value).dtype.
  base_dtype if off_exists else None
 if on_exists or off_exists:
  if dtype is not None:
  # Ensure provided on_value and/or off_value match dtype
  if (on_exists and on_dtype != dtype):
   raise TypeError("dtype {0} of on_value does not match "
   "dtype parameter {1}".format(on_dtype, dtype))
  if (off_exists and off_dtype != dtype):
   raise TypeError("dtype {0} of off_value does not match "
   "dtype parameter {1}".format(off_dtype, dtype))
  else:
  # dtype not provided: automatically assign it
  dtype = on_dtype if on_exists else off_dtype
 elif dtype is None:
  # None of on_value, off_value, or dtype provided. Default 
  dtype to float32
  dtype = dtypes.float32
 if not on_exists:
  # on_value not provided: assign to value 1 of type dtype
  on_value = ops.convert_to_tensor(1, dtype, name="
  on_value")
  on_dtype = dtype
 if not off_exists:
  # off_value not provided: assign to value 0 of type dtype
  off_value = ops.convert_to_tensor(0, dtype, name="
  off_value")
  off_dtype = dtype
 if on_dtype != off_dtype:
  raise TypeError("dtype {0} of on_value does not match "
  "dtype {1} of off_value".format(on_dtype, off_dtype))
 return gen_array_ops._one_hot(indices, depth, on_value, 
  off_value, axis, 
  name)
 
 
Enter: apply completion.
 + Ctrl: remove arguments and replace current word (no Pop-
 up focus).
 + Shift: remove arguments (requires Pop-up focus).
import tensorflow as tf
import numpy as np
data = np.linspace(0,9,10)
label = tf.one_hot(data,10)
with tf.Session() as sess:
 print(data)
 print(sess.run(label))

Tensorflow实现将标签变为one-hot形式

补充知识:数据清洗—制作one-hot

使用pandas进行one-hot编码

pandas.get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False, dtype=None)

pandas中get_dummies()函数可以将字段进行编码,转换为01形式,其中prefix可以为每个新展开的列名添加前缀。

但是,笔者发现它较易使用在数据为每一列为单独的字符:

Tensorflow实现将标签变为one-hot形式

df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'], 'C': [1, 2, 3]})

## one-hot
df_dumm = pd.get_dummies(df)

Tensorflow实现将标签变为one-hot形式

my_one_hot

但是对于数据为下面形式的可就不能直接转换了,需要先预处理一下,之后转换为one-hot形式:

Tensorflow实现将标签变为one-hot形式

我的做法是:

## tqdm_notebook可以导入tqdm包来使用
def one_hot_my(dataframe, attri):
 sample_attri_list = []
 sample_attri_loc_dic = {}
 loc = 0
 dataframe[attri] = dataframe[attri].astype(str)
 for attri_id in tqdm_notebook(dataframe[attri]):
  attri_id_pro = attri_id.strip().split(',')
  for key in attri_id_pro:
   if key not in sample_attri_loc_dic.keys():
    sample_attri_loc_dic[key] = loc
    loc+=1
  sample_attri_list.append(attri_id_pro)
 print("开始完成one-hot.......")  
 one_hot_attri = []
 for attri_id in tqdm_notebook(sample_attri_list):
  array = [0 for _ in range(len(sample_attri_loc_dic.keys()))]
  for key in attri_id:
   array[sample_attri_loc_dic[key]] = 1
  one_hot_attri.append(array)
 print("封装成dataframe.......") 
 ## 封装成dataframe
 columns = [attri+x for x in sample_attri_loc_dic.keys()]
 one_hot_rig_id_df = pd.DataFrame(one_hot_attri,columns=columns)
 return one_hot_rig_id_df

对属性二值化可以采用:

## 对属性进行二值化
def binary_apply(key, attri, dataframe):
 key_modify = 'is_' + ''.join(lazy_pinyin(key)) + '_' + attri
 print(key_modify)
 dataframe[key_modify] = dataframe.apply(lambda x:1 if x[attri]== key else 0, axis=1)
 return dataframe

对字符进行编码,将字符转换为0,1,2…:

## 对字符进行编码
# columns = ['job', 'marital', 'education','default','housing' ,'loan','contact', 'poutcome']
def encode_info(dataframe, columns):
 for col in columns:
  print(col)
  dataframe[col] = pd.factorize(dataframe[col])[0]
 return dataframe

Tensorflow实现将标签变为one-hot形式

以上这篇Tensorflow实现将标签变为one-hot形式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python使用urllib2模块抓取HTML页面资源的实例分享
May 03 Python
Python的面向对象编程方式学习笔记
Jul 12 Python
Django实现组合搜索的方法示例
Jan 23 Python
numpy matrix和array的乘和加实例
Jun 28 Python
python如何创建TCP服务端和客户端
Aug 26 Python
python 循环读取txt文档 并转换成csv的方法
Oct 26 Python
Python程序打包工具py2exe和PyInstaller详解
Jun 28 Python
Python使用QQ邮箱发送邮件实例与QQ邮箱设置详解
Feb 18 Python
Django实现图片上传功能步骤解析
Apr 22 Python
python中np是做什么的
Jul 21 Python
深入了解Python 变量作用域
Jul 24 Python
Python使用pyecharts控件绘制图表
Jun 05 Python
Python selenium爬取微博数据代码实例
May 22 #Python
python实现文法左递归的消除方法
May 22 #Python
使用Django搭建网站实现商品分页功能
May 22 #Python
Tensorflow卷积实现原理+手写python代码实现卷积教程
May 22 #Python
Python实现发票自动校核微信机器人的方法
May 22 #Python
基于django micro搭建网站实现加水印功能
May 22 #Python
基于Tensorflow一维卷积用法详解
May 22 #Python
You might like
PHP类相关知识点实例总结
2016/09/28 PHP
Laravel使用支付宝进行支付的示例代码
2017/08/16 PHP
无语,javascript居然支持中文(unicode)编程!
2007/04/12 Javascript
javascript获取当前ip的代码
2009/05/10 Javascript
JQuery的一些小应用收集
2010/03/27 Javascript
详解springmvc 接收json对象的两种方式
2016/12/06 Javascript
微信小程序 开发经验整理
2017/02/15 Javascript
nodejs提示:cross-device link not permitted, rename错误的解决方法
2019/06/10 NodeJs
JavaScript常用内置对象用法分析
2019/07/09 Javascript
JavaScript解析JSON数据示例
2019/07/16 Javascript
对Layer弹窗使用及返回数据接收的实例详解
2019/09/26 Javascript
selenium+java中用js来完成日期的修改
2019/10/31 Javascript
Vue的状态管理vuex使用方法详解
2020/02/05 Javascript
vue中axios防止多次触发终止多次请求的示例代码(防抖)
2020/02/16 Javascript
Vue组件化开发之通用型弹出框的实现
2020/02/28 Javascript
基于JavaScript实现表格隔行换色
2020/05/08 Javascript
[42:56]VGJ.S vs Serenity 2018国际邀请赛小组赛BO2 第二场 8.19
2018/08/21 DOTA
浅谈Python 字符串格式化输出(format/printf)
2016/07/21 Python
python中numpy基础学习及进行数组和矢量计算
2017/02/12 Python
Python实现学校管理系统
2018/01/11 Python
用python实现百度翻译的示例代码
2018/03/09 Python
python 读取txt中每行数据,并且保存到excel中的实例
2018/04/29 Python
python+opencv打开摄像头,保存视频、拍照功能的实现方法
2019/01/08 Python
Python中查看变量的类型内存地址所占字节的大小
2019/06/26 Python
利用Python的turtle库绘制玫瑰教程
2019/11/23 Python
python自动脚本的pyautogui入门学习
2020/04/01 Python
Nike挪威官网:Nike.com (NO)
2018/11/26 全球购物
牵手50新加坡:专为黄金岁月的单身人士而设的交友网站
2020/08/16 全球购物
北京振戎融通Java面试题
2015/09/03 面试题
高中数学教学反思
2014/01/30 职场文书
2014年社区植树节活动方案
2014/02/28 职场文书
诉讼代理人授权委托书
2014/04/08 职场文书
生产助理岗位职责
2014/06/18 职场文书
政风行风评议工作总结
2014/10/21 职场文书
家庭财产分割协议范文
2014/11/24 职场文书
python spilt()分隔字符串的实现示例
2021/05/21 Python