Tensorflow实现将标签变为one-hot形式


Posted in Python onMay 22, 2020

将数据标签变为类似MNIST的one-hot编码形式

def one_hot(indices, 
 depth, 
 on_value=None, 
 off_value=None, 
 axis=None, 
 dtype=None, 
 name=None):
 """Returns a one-hot tensor.
 
 The locations represented by indices in `indices` take value 
 `on_value`,
 while all other locations take value `off_value`.
 
 `on_value` and `off_value` must have matching data types. If 
 `dtype` is also
 provided, they must be the same data type as specified by 
 `dtype`.
 
 If `on_value` is not provided, it will default to the value `1` with 
 type
 `dtype`
 
 If `off_value` is not provided, it will default to the value `0` with 
 type
 `dtype`
 
 If the input `indices` is rank `N`, the output will have rank 
 `N+1`. The
 new axis is created at dimension `axis` (default: the new axis is 
 appended
 at the end).
 
 If `indices` is a scalar the output shape will be a vector of 
 length `depth`
 
 If `indices` is a vector of length `features`, the output shape will 
 be:
 
 ```
 features x depth if axis == -1
 depth x features if axis == 0
 ```
 
 If `indices` is a matrix (batch) with shape `[batch, features]`, the 
 output
 shape will be:
 
 ```
 batch x features x depth if axis == -1
 batch x depth x features if axis == 1
 depth x batch x features if axis == 0
 ```
 
 If `dtype` is not provided, it will attempt to assume the data 
 type of
 `on_value` or `off_value`, if one or both are passed in. If none 
 of
 `on_value`, `off_value`, or `dtype` are provided, `dtype` will 
 default to the
 value `tf.float32`.
 
 Note: If a non-numeric data type output is desired (`tf.string`, 
 `tf.bool`,
 etc.), both `on_value` and `off_value` _must_ be provided to 
 `one_hot`.
 
 For example:
 
 ```python
 indices = [0, 1, 2]
 depth = 3
 tf.one_hot(indices, depth) # output: [3 x 3]
 # [[1., 0., 0.],
 # [0., 1., 0.],
 # [0., 0., 1.]]
 
 indices = [0, 2, -1, 1]
 depth = 3
 tf.one_hot(indices, depth,
 on_value=5.0, off_value=0.0,
 axis=-1) # output: [4 x 3]
 # [[5.0, 0.0, 0.0], # one_hot(0)
 # [0.0, 0.0, 5.0], # one_hot(2)
 # [0.0, 0.0, 0.0], # one_hot(-1)
 # [0.0, 5.0, 0.0]] # one_hot(1)
 
 indices = [[0, 2], [1, -1]]
 depth = 3
 tf.one_hot(indices, depth,
 on_value=1.0, off_value=0.0,
 axis=-1) # output: [2 x 2 x 3]
 # [[[1.0, 0.0, 0.0], # one_hot(0)
 # [0.0, 0.0, 1.0]], # one_hot(2)
 # [[0.0, 1.0, 0.0], # one_hot(1)
 # [0.0, 0.0, 0.0]]] # one_hot(-1)
 ```
 
 Args:
 indices: A `Tensor` of indices.
 depth: A scalar defining the depth of the one hot dimension.
 on_value: A scalar defining the value to fill in output when 
 `indices[j]
 = i`. (default: 1)
 off_value: A scalar defining the value to fill in output when 
 `indices[j]
 != i`. (default: 0)
 axis: The axis to fill (default: -1, a new inner-most axis).
 dtype: The data type of the output tensor.
 
 Returns:
 output: The one-hot tensor.
 
 Raises:
 TypeError: If dtype of either `on_value` or `off_value` don't 
 match `dtype`
 TypeError: If dtype of `on_value` and `off_value` don't match 
 one another
 """
 with ops.name_scope(name, "one_hot", 
 [indices, depth, on_value, off_value, axis, 
  dtype]) as name:
 on_exists = on_value is not None
 off_exists = off_value is not None
 on_dtype = ops.convert_to_tensor(on_value).dtype.base_dtype 
  if on_exists else None
 off_dtype = ops.convert_to_tensor(off_value).dtype.
  base_dtype if off_exists else None
 if on_exists or off_exists:
  if dtype is not None:
  # Ensure provided on_value and/or off_value match dtype
  if (on_exists and on_dtype != dtype):
   raise TypeError("dtype {0} of on_value does not match "
   "dtype parameter {1}".format(on_dtype, dtype))
  if (off_exists and off_dtype != dtype):
   raise TypeError("dtype {0} of off_value does not match "
   "dtype parameter {1}".format(off_dtype, dtype))
  else:
  # dtype not provided: automatically assign it
  dtype = on_dtype if on_exists else off_dtype
 elif dtype is None:
  # None of on_value, off_value, or dtype provided. Default 
  dtype to float32
  dtype = dtypes.float32
 if not on_exists:
  # on_value not provided: assign to value 1 of type dtype
  on_value = ops.convert_to_tensor(1, dtype, name="
  on_value")
  on_dtype = dtype
 if not off_exists:
  # off_value not provided: assign to value 0 of type dtype
  off_value = ops.convert_to_tensor(0, dtype, name="
  off_value")
  off_dtype = dtype
 if on_dtype != off_dtype:
  raise TypeError("dtype {0} of on_value does not match "
  "dtype {1} of off_value".format(on_dtype, off_dtype))
 return gen_array_ops._one_hot(indices, depth, on_value, 
  off_value, axis, 
  name)
 
 
Enter: apply completion.
 + Ctrl: remove arguments and replace current word (no Pop-
 up focus).
 + Shift: remove arguments (requires Pop-up focus).
import tensorflow as tf
import numpy as np
data = np.linspace(0,9,10)
label = tf.one_hot(data,10)
with tf.Session() as sess:
 print(data)
 print(sess.run(label))

Tensorflow实现将标签变为one-hot形式

补充知识:数据清洗—制作one-hot

使用pandas进行one-hot编码

pandas.get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False, dtype=None)

pandas中get_dummies()函数可以将字段进行编码,转换为01形式,其中prefix可以为每个新展开的列名添加前缀。

但是,笔者发现它较易使用在数据为每一列为单独的字符:

Tensorflow实现将标签变为one-hot形式

df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'], 'C': [1, 2, 3]})

## one-hot
df_dumm = pd.get_dummies(df)

Tensorflow实现将标签变为one-hot形式

my_one_hot

但是对于数据为下面形式的可就不能直接转换了,需要先预处理一下,之后转换为one-hot形式:

Tensorflow实现将标签变为one-hot形式

我的做法是:

## tqdm_notebook可以导入tqdm包来使用
def one_hot_my(dataframe, attri):
 sample_attri_list = []
 sample_attri_loc_dic = {}
 loc = 0
 dataframe[attri] = dataframe[attri].astype(str)
 for attri_id in tqdm_notebook(dataframe[attri]):
  attri_id_pro = attri_id.strip().split(',')
  for key in attri_id_pro:
   if key not in sample_attri_loc_dic.keys():
    sample_attri_loc_dic[key] = loc
    loc+=1
  sample_attri_list.append(attri_id_pro)
 print("开始完成one-hot.......")  
 one_hot_attri = []
 for attri_id in tqdm_notebook(sample_attri_list):
  array = [0 for _ in range(len(sample_attri_loc_dic.keys()))]
  for key in attri_id:
   array[sample_attri_loc_dic[key]] = 1
  one_hot_attri.append(array)
 print("封装成dataframe.......") 
 ## 封装成dataframe
 columns = [attri+x for x in sample_attri_loc_dic.keys()]
 one_hot_rig_id_df = pd.DataFrame(one_hot_attri,columns=columns)
 return one_hot_rig_id_df

对属性二值化可以采用:

## 对属性进行二值化
def binary_apply(key, attri, dataframe):
 key_modify = 'is_' + ''.join(lazy_pinyin(key)) + '_' + attri
 print(key_modify)
 dataframe[key_modify] = dataframe.apply(lambda x:1 if x[attri]== key else 0, axis=1)
 return dataframe

对字符进行编码,将字符转换为0,1,2…:

## 对字符进行编码
# columns = ['job', 'marital', 'education','default','housing' ,'loan','contact', 'poutcome']
def encode_info(dataframe, columns):
 for col in columns:
  print(col)
  dataframe[col] = pd.factorize(dataframe[col])[0]
 return dataframe

Tensorflow实现将标签变为one-hot形式

以上这篇Tensorflow实现将标签变为one-hot形式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python读文件逐行处理的示例代码分享
Dec 27 Python
用Python编写一个简单的俄罗斯方块游戏的教程
Apr 03 Python
python实现简单淘宝秒杀功能
May 03 Python
详解用python自制微信机器人,定时发送天气预报
Mar 25 Python
关于numpy中eye和identity的区别详解
Nov 29 Python
如何使用Python多线程测试并发漏洞
Dec 18 Python
python tqdm 实现滚动条不上下滚动代码(保持一行内滚动)
Feb 19 Python
使用Python将图片转正方形的两种方法实例代码详解
Apr 29 Python
python 最简单的实现适配器设计模式的示例
Jun 30 Python
python中pathlib模块的基本用法与总结
Aug 17 Python
python实现快速文件格式批量转换的方法
Oct 16 Python
Python生成pdf目录书签的实例方法
Oct 29 Python
Python selenium爬取微博数据代码实例
May 22 #Python
python实现文法左递归的消除方法
May 22 #Python
使用Django搭建网站实现商品分页功能
May 22 #Python
Tensorflow卷积实现原理+手写python代码实现卷积教程
May 22 #Python
Python实现发票自动校核微信机器人的方法
May 22 #Python
基于django micro搭建网站实现加水印功能
May 22 #Python
基于Tensorflow一维卷积用法详解
May 22 #Python
You might like
用PHP+MySql编写聊天室
2006/10/09 PHP
php购物网站支付paypal使用方法
2010/11/28 PHP
php类中的$this,static,final,const,self这几个关键字使用方法
2015/12/14 PHP
yii2分页之实现跳转到具体某页的实例代码
2016/06/02 PHP
php单元测试phpunit入门实例教程
2017/11/17 PHP
php统计数组不同元素的个数的实例方法
2019/09/26 PHP
Javascript 面向对象(三)接口代码
2012/05/23 Javascript
js修改table中Td的值(定义td的单击事件)
2013/01/10 Javascript
JavaScript实现按Ctrl键打开新页面
2014/09/04 Javascript
Extjs grid panel自带滚动条失效的解决方法
2014/09/11 Javascript
判断window.onload是否多次使用的方法
2014/09/21 Javascript
js实现从右向左缓缓浮出网页浮动层广告的方法
2015/05/09 Javascript
AngularJS实践之使用ng-repeat中$index的注意点
2016/12/22 Javascript
利用vscode调试编译后的js代码详解
2018/05/14 Javascript
react实现点击选中的li高亮的示例代码
2018/05/24 Javascript
详解Angular6.0使用路由步骤(共7步)
2018/06/29 Javascript
Bootstrap Table实现定时刷新数据的方法
2018/08/13 Javascript
layui 优化button按钮和弹出框的方法
2018/08/15 Javascript
Vuejs 实现简易 todoList 功能 与 组件实例代码
2018/09/10 Javascript
angularjs请求数据的方法示例
2019/08/06 Javascript
Node.js文本文件BOM头的去除方法
2020/11/22 Javascript
[02:32]DOTA2完美大师赛场馆静安体育中心观赛全攻略
2017/11/08 DOTA
使用python实现拉钩网上的FizzBuzzWhizz问题示例
2014/05/05 Python
Python缩进和冒号详解
2016/06/01 Python
python:pandas合并csv文件的方法(图书数据集成)
2018/04/12 Python
Python Pandas找到缺失值的位置方法
2018/04/12 Python
Python加载带有注释的Json文件实例
2018/05/23 Python
python快速编写单行注释多行注释的方法
2019/07/31 Python
Python爬虫爬取博客实现可视化过程解析
2020/06/29 Python
Python3+Flask安装使用教程详解
2021/02/16 Python
捐书寄语赠言
2014/01/18 职场文书
2014年文学毕业生自我鉴定
2014/04/23 职场文书
品质标语大全
2014/06/21 职场文书
学生检讨书怎么写
2014/10/09 职场文书
有关朝花夕拾的读书笔记
2015/06/29 职场文书
导游词之张家口
2019/12/13 职场文书