Tensorflow卷积实现原理+手写python代码实现卷积教程


Posted in Python onMay 22, 2020

从一个通道的图片进行卷积生成新的单通道图的过程很容易理解,对于多个通道卷积后生成多个通道的图理解起来有点抽象。本文以通俗易懂的方式讲述卷积,并辅以图片解释,能快速理解卷积的实现原理。最后手写python代码实现卷积过程,让Tensorflow卷积在我们面前不再是黑箱子!

注意:

本文只针对batch_size=1,padding='SAME',stride=[1,1,1,1]进行实验和解释,其他如果不是这个参数设置,原理也是一样。

1 Tensorflow卷积实现原理

先看一下卷积实现原理,对于in_c个通道的输入图,如果需要经过卷积后输出out_c个通道图,那么总共需要in_c * out_c个卷积核参与运算。参考下图:

Tensorflow卷积实现原理+手写python代码实现卷积教程

如上图,输入为[h:5,w:5,c:4],那么对应输出的每个通道,需要4个卷积核。上图中,输出为3个通道,所以总共需要3*4=12个卷积核。对于单个输出通道中的每个点,取值为对应的一组4个不同的卷积核经过卷积计算后的和。

接下来,我们以输入为2个通道宽高分别为5的输入、3*3的卷积核、1个通道宽高分别为5的输出,作为一个例子展开。

2个通道,5*5的输入定义如下:

#输入,shape=[c,h,w]
input_data=[
  [[1,0,1,2,1],
  [0,2,1,0,1],
  [1,1,0,2,0],
  [2,2,1,1,0],
  [2,0,1,2,0]],

  [[2,0,2,1,1],
  [0,1,0,0,2],
  [1,0,0,2,1],
  [1,1,2,1,0],
  [1,0,1,1,1]],
 
  ]

对于输出为1通道map,根据前面计算方法,需要2*1个卷积核。定义卷积核如下:

#卷积核,shape=[in_c,k,k]=[2,3,3]
weights_data=[ 
  [[ 1, 0, 1],
  [-1, 1, 0],
  [ 0,-1, 0]],
  [[-1, 0, 1],
  [ 0, 0, 1],
  [ 1, 1, 1]] 
  ]

上面定义的数据,在接下来的计算对应关系将按下图所描述的方式进行。

Tensorflow卷积实现原理+手写python代码实现卷积教程

由于Tensorflow定义的tensor的shape为[n,h,w,c],这里我们可以直接把n设为1,即batch size为1。还有一个问题,就是我们刚才定义的输入为[c,h,w],所以需要将[c,h,w]转为[h,w,c]。转换方式如下,注释已经解释很详细,这里不再解释。

def get_shape(tensor):
 [s1,s2,s3]= tensor.get_shape() 
 s1=int(s1)
 s2=int(s2)
 s3=int(s3)
 return s1,s2,s3

def chw2hwc(chw_tensor): 
 [c,h,w]=get_shape(chw_tensor) 
 cols=[]
 
 for i in range(c):
 #每个通道里面的二维数组转为[w*h,1]即1列 
 line = tf.reshape(chw_tensor[i],[h*w,1])
 cols.append(line)

 #横向连接,即将所有竖直数组横向排列连接
 input = tf.concat(cols,1)#[w*h,c]
 #[w*h,c]-->[h,w,c]
 input = tf.reshape(input,[h,w,c])
 return input

同理,Tensorflow使用卷积核的时候,使用的格式是[k,k,in_c,out_c]。而我们在定义卷积核的时候,是按[in_c,k,k]的方式定义的,这里需要将[in_c,k,k]转为[k,k,in_c],由于为了简化工作量,我们规定输出为1个通道,即out_c=1。所以这里我们可以直接简单地对weights_data调用chw2hwc,再在第3维度扩充一下即可。

接下来,贴出完整的代码:

import tensorflow as tf
import numpy as np
input_data=[
  [[1,0,1,2,1],
  [0,2,1,0,1],
  [1,1,0,2,0],
  [2,2,1,1,0],
  [2,0,1,2,0]],

  [[2,0,2,1,1],
  [0,1,0,0,2],
  [1,0,0,2,1],
  [1,1,2,1,0],
  [1,0,1,1,1]],
 
  ]
weights_data=[ 
  [[ 1, 0, 1],
  [-1, 1, 0],
  [ 0,-1, 0]],
  [[-1, 0, 1],
  [ 0, 0, 1],
  [ 1, 1, 1]] 
  ]
def get_shape(tensor):
 [s1,s2,s3]= tensor.get_shape() 
 s1=int(s1)
 s2=int(s2)
 s3=int(s3)
 return s1,s2,s3

def chw2hwc(chw_tensor): 
 [c,h,w]=get_shape(chw_tensor) 
 cols=[]
 
 for i in range(c):
 #每个通道里面的二维数组转为[w*h,1]即1列 
 line = tf.reshape(chw_tensor[i],[h*w,1])
 cols.append(line)

 #横向连接,即将所有竖直数组横向排列连接
 input = tf.concat(cols,1)#[w*h,c]
 #[w*h,c]-->[h,w,c]
 input = tf.reshape(input,[h,w,c])
 return input

def hwc2chw(hwc_tensor):
 [h,w,c]=get_shape(hwc_tensor) 
 cs=[] 
 for i in range(c): 
 #[h,w]-->[1,h,w] 
 channel=tf.expand_dims(hwc_tensor[:,:,i],0)
 cs.append(channel)
 #[1,h,w]...[1,h,w]---->[c,h,w]
 input = tf.concat(cs,0)#[c,h,w]
 return input

def tf_conv2d(input,weights):
 conv = tf.nn.conv2d(input, weights, strides=[1, 1, 1, 1], padding='SAME')
 return conv

def main(): 
 const_input = tf.constant(input_data , tf.float32)
 const_weights = tf.constant(weights_data , tf.float32 )

 
 input = tf.Variable(const_input,name="input")
 #[2,5,5]------>[5,5,2]
 input=chw2hwc(input)
 #[5,5,2]------>[1,5,5,2]
 input=tf.expand_dims(input,0)

 
 weights = tf.Variable(const_weights,name="weights")
 #[2,3,3]-->[3,3,2]
 weights=chw2hwc(weights)
 #[3,3,2]-->[3,3,2,1]
 weights=tf.expand_dims(weights,3) 

 #[b,h,w,c]
 conv=tf_conv2d(input,weights)
 rs=hwc2chw(conv[0]) 

 init=tf.global_variables_initializer()
 sess=tf.Session()
 sess.run(init)
 conv_val = sess.run(rs)
 
 print(conv_val[0]) 


if __name__=='__main__':
 main()

上面代码有几个地方需要提一下,

由于输出通道为1,因此可以对卷积核数据转换的时候直接调用chw2hwc,如果输入通道不为1,则不能这样完成转换。

输入完成chw转hwc后,记得在第0维扩充维数,因为卷积要求输入为[n,h,w,c]

为了方便我们查看结果,记得将hwc的shape转为chw

执行上面代码,运行结果如下:

[[ 2. 0. 2. 4. 0.]
 [ 1. 4. 4. 3. 5.]
 [ 4. 3. 5. 9. -1.]
 [ 3. 4. 6. 2. 1.]
 [ 5. 3. 5. 1. -2.]]

这个计算结果是怎么计算出来的?为了让大家更清晰的学习其中细节,我特地制作了一个GIF图,看完这个图后,如果你还看不懂卷积的计算过程,你可以来打我。。。。

Tensorflow卷积实现原理+手写python代码实现卷积教程

2 手写Python代码实现卷积

自己实现卷积时,就无须将定义的数据[c,h,w]转为[h,w,c]了。

import numpy as np
input_data=[
  [[1,0,1,2,1],
  [0,2,1,0,1],
  [1,1,0,2,0],
  [2,2,1,1,0],
  [2,0,1,2,0]],

  [[2,0,2,1,1],
  [0,1,0,0,2],
  [1,0,0,2,1],
  [1,1,2,1,0],
  [1,0,1,1,1]] 
  ]
weights_data=[ 
  [[ 1, 0, 1],
  [-1, 1, 0],
  [ 0,-1, 0]],
  [[-1, 0, 1],
  [ 0, 0, 1],
  [ 1, 1, 1]] 

  ]

#fm:[h,w]
#kernel:[k,k]
#return rs:[h,w] 
def compute_conv(fm,kernel):
 [h,w]=fm.shape
 [k,_]=kernel.shape 
 r=int(k/2)
 #定义边界填充0后的map
 padding_fm=np.zeros([h+2,w+2],np.float32)
 #保存计算结果
 rs=np.zeros([h,w],np.float32)
 #将输入在指定该区域赋值,即除了4个边界后,剩下的区域
 padding_fm[1:h+1,1:w+1]=fm 
 #对每个点为中心的区域遍历
 for i in range(1,h+1):
 for j in range(1,w+1): 
  #取出当前点为中心的k*k区域
  roi=padding_fm[i-r:i+r+1,j-r:j+r+1]
  #计算当前点的卷积,对k*k个点点乘后求和
  rs[i-1][j-1]=np.sum(roi*kernel)
 
 return rs
 
def my_conv2d(input,weights):
 [c,h,w]=input.shape
 [_,k,_]=weights.shape
 outputs=np.zeros([h,w],np.float32)

 #对每个feature map遍历,从而对每个feature map进行卷积
 for i in range(c):
 #feature map==>[h,w]
 f_map=input[i]
 #kernel ==>[k,k]
 w=weights[i]
 rs =compute_conv(f_map,w)
 outputs=outputs+rs 

 return outputs

def main(): 
 
 #shape=[c,h,w]
 input = np.asarray(input_data,np.float32)
 #shape=[in_c,k,k]
 weights = np.asarray(weights_data,np.float32) 
 rs=my_conv2d(input,weights) 
 print(rs) 


if __name__=='__main__':
 main()

代码无须太多解释,直接看注释。然后跑出来的结果如下:

[[ 2. 0. 2. 4. 0.]
 [ 1. 4. 4. 3. 5.]
 [ 4. 3. 5. 9. -1.]
 [ 3. 4. 6. 2. 1.]
 [ 5. 3. 5. 1. -2.]]

对比发现,跟Tensorflow的卷积结果是一样的。

3 小结

本文中,我们学习了Tensorflow的卷积实现原理,通过也通过python代码实现了输出通道为1的卷积,其实输出通道数不影响我们学习卷积原理。后面如果有机会的话,我们去实现一个更加健全,完整的卷积。

以上这篇Tensorflow卷积实现原理+手写python代码实现卷积教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
深入探究Python中变量的拷贝和作用域问题
May 05 Python
Python中使用strip()方法删除字符串中空格的教程
May 20 Python
Python定时执行之Timer用法示例
May 27 Python
详解python的几种标准输出重定向方式
Aug 15 Python
Python处理文本文件中控制字符的方法
Feb 07 Python
Python实现对象转换为xml的方法示例
Jun 08 Python
Python使用内置json模块解析json格式数据的方法
Jul 20 Python
解决Python2.7读写文件中的中文乱码问题
Apr 12 Python
PyCharm取消波浪线、下划线和中划线的实现
Mar 03 Python
Python打印不合法的文件名
Jul 31 Python
pyx文件 生成pyd 文件用于 cython调用的实现
Mar 04 Python
Python机器学习实战之k-近邻算法的实现
Nov 27 Python
Python实现发票自动校核微信机器人的方法
May 22 #Python
基于django micro搭建网站实现加水印功能
May 22 #Python
基于Tensorflow一维卷积用法详解
May 22 #Python
Python参数传递机制传值和传引用原理详解
May 22 #Python
python filecmp.dircmp实现递归比对两个目录的方法
May 22 #Python
关于keras.layers.Conv1D的kernel_size参数使用介绍
May 22 #Python
Python参数传递对象的引用原理解析
May 22 #Python
You might like
PHP设计模式之命令模式的深入解析
2013/06/13 PHP
Symfony生成二维码的方法
2016/02/04 PHP
php $_SESSION会员登录实例分享
2021/01/19 PHP
PHP实现SMTP邮件的发送实例
2018/09/27 PHP
用YUI做了个标签浏览效果
2007/02/20 Javascript
Uglifyjs(JS代码优化工具)入门 安装使用
2020/04/13 Javascript
jQuery插件jQuery-JSONP开发ajax调用使用注意事项
2013/11/22 Javascript
Windows系统中安装nodejs图文教程
2015/02/28 NodeJs
JavaScript判断图片是否已经加载完毕的方法汇总
2016/02/05 Javascript
使用jQuery或者原生js实现鼠标滚动加载页面新数据
2016/03/06 Javascript
div实现自适应高度的textarea实现angular双向绑定
2017/01/08 Javascript
AngularJS动态绑定ng-options的ng-model实例代码
2017/06/21 Javascript
JavaScript正则表达式校验与递归函数实际应用实例解析
2017/08/04 Javascript
微信小程序 页面跳转事件绑定的实例详解
2017/09/20 Javascript
Vue结合Video.js播放m3u8视频流的方法示例
2018/05/04 Javascript
vue2.0 实现导航守卫(路由守卫)
2018/05/21 Javascript
详解组件库的webpack构建速度优化
2018/06/18 Javascript
使用layui日期控件laydate对开始和结束时间进行联动控制的方法
2019/09/06 Javascript
vue实现简单计算商品价格
2020/09/14 Javascript
仅用50行Python代码实现一个简单的代理服务器
2015/04/08 Python
Python守护进程用法实例分析
2015/06/04 Python
python 调用HBase的简单实例
2016/12/18 Python
选择Python写网络爬虫的优势和理由
2019/07/07 Python
HTML5 3D旋转相册的实现示例
2019/12/03 HTML / CSS
serialVersionUID具有什么样的特征
2014/02/20 面试题
酒店人事专员岗位职责
2013/12/19 职场文书
电气工程和自动化自荐信范文
2013/12/25 职场文书
班风口号
2014/06/18 职场文书
cf战队收人口号
2014/06/21 职场文书
2014年扶贫工作总结
2014/11/18 职场文书
大学生创业事迹材料
2014/12/30 职场文书
结婚保证书(三从四德)
2015/02/26 职场文书
python爬取企查查企业信息之selenium自动模拟登录企查查
2021/04/08 Python
Springboot/Springcloud项目集成redis进行存取的过程解析
2021/12/04 Redis
利用Sharding-Jdbc进行分库分表的操作代码
2022/01/22 Java/Android
Python中 range | np.arange | np.linspace三者的区别
2022/03/22 Python