pytorch中的numel函数用法说明


Posted in Python onMay 13, 2021

获取tensor中一共包含多少个元素

import torch
x = torch.randn(3,3)
print("number elements of x is ",x.numel())
y = torch.randn(3,10,5)
print("number elements of y is ",y.numel())

输出:

number elements of x is 9

number elements of y is 150

27和150分别位x和y中各有多少个元素或变量

补充:pytorch获取张量元素个数numel()的用法

numel就是"number of elements"的简写。

numel()可以直接返回int类型的元素个数

import torch 
a = torch.randn(1, 2, 3, 4)
b = a.numel()
print(type(b)) # int
print(b) # 24

通过numel()函数,我们可以迅速查看一个张量到底又多少元素。

补充:pytorch 卷积结构和numel()函数

看代码吧~

from torch import nn 
class CNN(nn.Module):
    def __init__(self, num_channels=1, d=56, s=12, m=4):
        super(CNN, self).__init__()
        self.first_part = nn.Sequential(
            nn.Conv2d(num_channels, d, kernel_size=3, padding=5//2),
            nn.Conv2d(num_channels, d, kernel_size=(1,3), padding=5//2),
            nn.Conv2d(num_channels, d, kernel_size=(3,1), padding=5//2),
            nn.PReLU(d)
        )
 
    def forward(self, x):
        x = self.first_part(x)
        return x
 
model = CNN()
for m in model.first_part:
    if isinstance(m, nn.Conv2d):
        # print('m:',m.weight.data)
        print('m:',m.weight.data[0])
        print('m:',m.weight.data[0][0])
        print('m:',m.weight.data.numel()) #numel() 计算矩阵中元素的个数
 
结果:
m: tensor([[[-0.2822,  0.0128, -0.0244],
         [-0.2329,  0.1037,  0.2262],
         [ 0.2845, -0.3094,  0.1443]]]) #卷积核大小为3x3
m: tensor([[-0.2822,  0.0128, -0.0244],
        [-0.2329,  0.1037,  0.2262],
        [ 0.2845, -0.3094,  0.1443]]) #卷积核大小为3x3
m: 504   # = 56 x (3 x 3)  输出通道数为56,卷积核大小为3x3
m: tensor([-0.0335,  0.2945,  0.2512,  0.2770,  0.2071,  0.1133, -0.1883,  0.2738,
         0.0805,  0.1339, -0.3000, -0.1911, -0.1760,  0.2855, -0.0234, -0.0843,
         0.1815,  0.2357,  0.2758,  0.2689, -0.2477, -0.2528, -0.1447, -0.0903,
         0.1870,  0.0945, -0.2786, -0.0419,  0.1577, -0.3100, -0.1335, -0.3162,
        -0.1570,  0.3080,  0.0951,  0.1953,  0.1814, -0.1936,  0.1466, -0.2911,
        -0.1286,  0.3024,  0.1143, -0.0726, -0.2694, -0.3230,  0.2031, -0.2963,
         0.2965,  0.2525, -0.2674,  0.0564, -0.3277,  0.2185, -0.0476,  0.0558]) bias偏置的值
m: tensor([[[ 0.5747, -0.3421,  0.2847]]]) 卷积核大小为1x3
m: tensor([[ 0.5747, -0.3421,  0.2847]]) 卷积核大小为1x3
m: 168 # = 56 x (1 x 3) 输出通道数为56,卷积核大小为1x3
m: tensor([ 0.5328, -0.5711, -0.1945,  0.2844,  0.2012, -0.0084,  0.4834, -0.2020,
        -0.0941,  0.4683, -0.2386,  0.2781, -0.1812, -0.2990, -0.4652,  0.1228,
        -0.0627,  0.3112, -0.2700,  0.0825,  0.4345, -0.0373, -0.3220, -0.5038,
        -0.3166, -0.3823,  0.3947, -0.3232,  0.1028,  0.2378,  0.4589,  0.1675,
        -0.3112, -0.0905, -0.0705,  0.2763,  0.5433,  0.2768, -0.3804,  0.4855,
        -0.4880, -0.4555,  0.4143,  0.5474,  0.3305, -0.0381,  0.2483,  0.5133,
        -0.3978,  0.0407,  0.2351,  0.1910, -0.5385,  0.1340,  0.1811, -0.3008]) bias偏置的值
m: tensor([[[0.0184],
         [0.0981],
         [0.1894]]]) 卷积核大小为3x1
m: tensor([[0.0184],
        [0.0981],
        [0.1894]]) 卷积核大小为3x1
m: 168 # = 56 x (3 x 1) 输出通道数为56,卷积核大小为3x1
m: tensor([-0.2951, -0.4475,  0.1301,  0.4747, -0.0512,  0.2190,  0.3533, -0.1158,
         0.2237, -0.1407, -0.4756,  0.1637, -0.4555, -0.2157,  0.0577, -0.3366,
        -0.3252,  0.2807,  0.1660,  0.2949, -0.2886, -0.5216,  0.1665,  0.2193,
         0.2038, -0.1357,  0.2626,  0.2036,  0.3255,  0.2756,  0.1283, -0.4909,
         0.5737, -0.4322, -0.4930, -0.0846,  0.2158,  0.5565,  0.3751, -0.3775,
        -0.5096, -0.4520,  0.2246, -0.5367,  0.5531,  0.3372, -0.5593, -0.2780,
        -0.5453, -0.2863,  0.5712, -0.2882,  0.4788,  0.3222, -0.4846,  0.2170]) bias偏置的值
  
'''初始化后'''
class CNN(nn.Module):
    def __init__(self, num_channels=1, d=56, s=12, m=4):
        super(CNN, self).__init__()
        self.first_part = nn.Sequential(
            nn.Conv2d(num_channels, d, kernel_size=3, padding=5//2),
            nn.Conv2d(num_channels, d, kernel_size=(1,3), padding=5//2),
            nn.Conv2d(num_channels, d, kernel_size=(3,1), padding=5//2),
            nn.PReLU(d)
        )
        self._initialize_weights()
    def _initialize_weights(self):
        for m in self.first_part:
            if isinstance(m, nn.Conv2d):
                nn.init.normal_(m.weight.data, mean=0.0, std=math.sqrt(2/(m.out_channels*m.weight.data[0][0].numel())))
                nn.init.zeros_(m.bias.data)
 
    def forward(self, x):
        x = self.first_part(x)
        return x
 
model = CNN()
for m in model.first_part:
    if isinstance(m, nn.Conv2d):
        # print('m:',m.weight.data)
        print('m:',m.weight.data[0])
        print('m:',m.weight.data[0][0])
        print('m:',m.weight.data.numel()) #numel() 计算矩阵中元素的个数
 
结果:
m: tensor([[[-0.0284, -0.0585,  0.0271],
         [ 0.0125,  0.0554,  0.0511],
         [-0.0106,  0.0574, -0.0053]]])
m: tensor([[-0.0284, -0.0585,  0.0271],
        [ 0.0125,  0.0554,  0.0511],
        [-0.0106,  0.0574, -0.0053]])
m: 504
m: tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0.])
m: tensor([[[ 0.0059,  0.0465, -0.0725]]])
m: tensor([[ 0.0059,  0.0465, -0.0725]])
m: 168
m: tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0.])
m: tensor([[[ 0.0599],
         [-0.1330],
         [ 0.2456]]])
m: tensor([[ 0.0599],
        [-0.1330],
        [ 0.2456]])
m: 168
m: tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0.])

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。如有错误或未考虑完全的地方,望不吝赐教。

Python 相关文章推荐
Python中的Numpy入门教程
Apr 26 Python
Python线程中对join方法的运用的教程
Apr 09 Python
python 获取网页编码方式实现代码
Mar 11 Python
python实现SOM算法
Feb 23 Python
利用pyinstaller将py文件打包为exe的方法
May 14 Python
PyCharm鼠标右键不显示Run unittest的解决方法
Nov 30 Python
Python3.6.2调用ffmpeg的方法
Jan 10 Python
Python argparse模块应用实例解析
Nov 15 Python
pytorch torch.nn.AdaptiveAvgPool2d()自适应平均池化函数详解
Jan 03 Python
python 解决flask 图片在线浏览或者直接下载的问题
Jan 09 Python
解决import tensorflow as tf 出错的原因
Apr 16 Python
Python中生成随机数据安全性、多功能性、用途和速度方面进行比较
Apr 14 Python
pytorch损失反向传播后梯度为none的问题
如何使用Python实现一个简易的ORM模型
May 12 #Python
用python删除文件夹中的重复图片(图片去重)
May 12 #Python
Pyhton模块和包相关知识总结
python 下划线的多种应用场景总结
May 12 #Python
超级详细实用的pycharm常用快捷键
pycharm 如何查看某一函数源码的快捷键
You might like
php安全之直接用$获取值而不$_GET 字符转义
2012/06/03 PHP
PHP多进程编程之僵尸进程问题的理解
2017/10/15 PHP
PHP使用HTML5 FormData对象提交表单操作示例
2019/07/02 PHP
Javascript 面向对象(二)封装代码
2012/05/23 Javascript
JS函数实现动态添加CSS样式表文件
2012/12/15 Javascript
js实现的切换面板实例代码
2013/06/17 Javascript
JavaScript作用域链使用介绍
2013/08/29 Javascript
Bootstrap+jfinal退出系统弹出确认框的实现方法
2016/05/30 Javascript
angularjs封装bootstrap时间插件datetimepicker
2016/06/20 Javascript
JQuery中解决重复动画的方法
2016/10/17 Javascript
Angular的$http与$location
2016/12/26 Javascript
Babel 入门教程学习笔记
2018/06/13 Javascript
Bootstrap-table使用footerFormatter做统计列功能
2018/09/07 Javascript
layer iframe 设置关闭按钮的方法
2019/09/12 Javascript
vue 实现input表单元素的disabled示例
2019/10/28 Javascript
Vue 使用beforeEach实现登录状态检查功能
2019/10/31 Javascript
用js限制网页只在微信浏览器中打开(或者只能手机端访问)
2020/12/24 Javascript
javascript设计模式 ? 迭代器模式原理与用法实例分析
2020/04/17 Javascript
js仿淘宝放大镜效果
2020/12/28 Javascript
使用Python保存网页上的图片或者保存页面为截图
2016/03/05 Python
Python书单 不将就
2017/07/11 Python
在python中以相同顺序shuffle两个list的方法
2018/12/13 Python
python实现K近邻回归,采用等权重和不等权重的方法
2019/01/23 Python
Python面向对象程序设计之类的定义与继承简单示例
2019/03/18 Python
Django通用类视图实现忘记密码重置密码功能示例
2019/12/17 Python
keras 多任务多loss实例
2020/06/22 Python
Python ckeditor富文本编辑器代码实例解析
2020/06/22 Python
用python实现前向分词最大匹配算法的示例代码
2020/08/06 Python
html5中svg canvas和图片之间相互转化思路代码
2014/01/24 HTML / CSS
如果一个类实现了多个接口但是这些接口有相同的方法名将会怎样
2013/06/16 面试题
公务员培训自我鉴定
2013/09/19 职场文书
《小松树和大松树》教学反思
2014/02/20 职场文书
大学生档案自我鉴定(2篇)
2014/10/14 职场文书
二审答辩状范文
2015/05/22 职场文书
安全学习心得体会范文
2016/01/18 职场文书
2016廉洁教育心得体会
2016/01/20 职场文书