python+pandas生成指定日期和重采样的方法


Posted in Python onApril 11, 2018

python 日期的范围、频率、重采样以及频率转换

pandas有一整套的标准时间序列频率以及用于重采样、频率推断、生成固定频率日期范围的工具。

生成指定日期范围的范围

pandas.date_range()用于生成指定长度的DatatimeIndex:

1)默认情况下,date_range会按着时间间隔为天的方式生成从给定开始到结束时间的时间戳数组;

2)如果只指定开始或结束时间,还需要periods标定时间长度。

import pandas as pd
pd.date_range('2017-6-20','2017-6-27')
DatetimeIndex(['2017-06-20', '2017-06-21', '2017-06-22', '2017-06-23',
   '2017-06-24', '2017-06-25', '2017-06-26', '2017-06-27'],
   dtype='datetime64[ns]', freq='D')
pd.date_range('2017-6-20 12:59:30','2017-6-27')
DatetimeIndex(['2017-06-20 12:59:30', '2017-06-21 12:59:30',
   '2017-06-22 12:59:30', '2017-06-23 12:59:30',
   '2017-06-24 12:59:30', '2017-06-25 12:59:30',
   '2017-06-26 12:59:30'],
   dtype='datetime64[ns]', freq='D')
pd.date_range('2017-6-20 12:59:30',periods = 8)
DatetimeIndex(['2017-06-20 12:59:30', '2017-06-21 12:59:30',
   '2017-06-22 12:59:30', '2017-06-23 12:59:30',
   '2017-06-24 12:59:30', '2017-06-25 12:59:30',
   '2017-06-26 12:59:30', '2017-06-27 12:59:30'],
   dtype='datetime64[ns]', freq='D')
pd.date_range('2017-6-20 12:59:30',periods = 8, normalize = True)
DatetimeIndex(['2017-06-20', '2017-06-21', '2017-06-22', '2017-06-23',
   '2017-06-24', '2017-06-25', '2017-06-26', '2017-06-27'],
   dtype='datetime64[ns]', freq='D')

频率和日期偏移量

pandas中的频率是由一个基础频率(M、H)也可以是(Hour、Minute、h、min等)

pd.date_range('2017-6-27',periods = 7,freq = '1h30min')
DatetimeIndex(['2017-06-27 00:00:00', '2017-06-27 01:30:00',
   '2017-06-27 03:00:00', '2017-06-27 04:30:00',
   '2017-06-27 06:00:00', '2017-06-27 07:30:00',
   '2017-06-27 09:00:00'],
   dtype='datetime64[ns]', freq='90T')
pd.date_range('2017-6-27',periods = 7,freq = 'M')
DatetimeIndex(['2017-06-30', '2017-07-31', '2017-08-31', '2017-09-30',
   '2017-10-31', '2017-11-30', '2017-12-31'],
   dtype='datetime64[ns]', freq='M')
pd.date_range('2017-6-27',periods = 7,freq = 'd')
DatetimeIndex(['2017-06-27', '2017-06-28', '2017-06-29', '2017-06-30',
   '2017-07-01', '2017-07-02', '2017-07-03'],
   dtype='datetime64[ns]', freq='D')
pd.date_range('2017-6-27',periods = 7,freq = 'H')
DatetimeIndex(['2017-06-27 00:00:00', '2017-06-27 01:00:00',
   '2017-06-27 02:00:00', '2017-06-27 03:00:00',
   '2017-06-27 04:00:00', '2017-06-27 05:00:00',
   '2017-06-27 06:00:00'],
   dtype='datetime64[ns]', freq='H')

常用的基础频率

别名 偏移量 说明
D/d Day 每日历日
B BusinessDay 每工作日
H/h Hour 每小时
T或min Minute 每分
S Secend 每秒
L或ms Milli 每毫秒(每千分之一秒)
U Micro 每微秒(即百万分之一秒)
M MonthEnd 每月最后一个日历日
BM BusinessDayEnd 每月最后一个工作

上表只展示了部分!

WOM日期(可获得例如“每月第3个星期五”)

pd.date_range('2017-06-01','2017-07-31',freq='WOM-3FRI')
DatetimeIndex(['2017-06-16', '2017-07-21'], dtype='datetime64[ns]', freq='WOM-3FRI')

重采样及频率转换

降采样:高频数据到低频数据

升采样:低频数据到高频数据

主要函数:resample()(pandas对象都会有这个方法)

resample方法的参数

参数 说明
freq 表示重采样频率,例如‘M'、‘5min',Second(15)
how='mean' 用于产生聚合值的函数名或数组函数,例如‘mean'、‘ohlc'、np.max等,默认是‘mean',其他常用的值由:‘first'、‘last'、‘median'、‘max'、‘min'
axis=0 默认是纵轴,横轴设置axis=1
fill_method = None 升采样时如何插值,比如‘ffill'、‘bfill'等
closed = ‘right' 在降采样时,各时间段的哪一段是闭合的,‘right'或‘left',默认‘right'
label= ‘right' 在降采样时,如何设置聚合值的标签,例如,9:30-9:35会被标记成9:30还是9:35,默认9:35
loffset = None 面元标签的时间校正值,比如‘-1s'或Second(-1)用于将聚合标签调早1秒
limit=None 在向前或向后填充时,允许填充的最大时期数
kind = None 聚合到时期(‘period')或时间戳(‘timestamp'),默认聚合到时间序列的索引类型
convention = None 当重采样时期时,将低频率转换到高频率所采用的约定(start或end)。默认‘end'

降采样

需考虑:

1)各区间哪边是闭合的(参数:closed)

2)如何标记各聚合面元,用区间的开头还是末尾(参数:label)

ts_index = pd.date_range('2017-06-20',periods =12,freq = '1min')#一分钟采样数据
ts = pd.Series(np.arange(12),index = ts_index)
ts
2017-06-20 00:00:00 0
 2017-06-20 00:01:00 1
 2017-06-20 00:02:00 2
 2017-06-20 00:03:00 3
 2017-06-20 00:04:00 4
 2017-06-20 00:05:00 5
 2017-06-20 00:06:00 6
 2017-06-20 00:07:00 7
 2017-06-20 00:08:00 8
 2017-06-20 00:09:00 9
 2017-06-20 00:10:00 10
 2017-06-20 00:11:00 11
 Freq: T, dtype: int32

聚合到5分钟

ts.resample('5min',how='sum')
C:\Program Files\anaconda\lib\site-packages\ipykernel\__main__.py:1: FutureWarning: how in .resample() is deprecated
 the new syntax is .resample(...).sum()
 if __name__ == '__main__':
 2017-06-20 00:00:00 10
 2017-06-20 00:05:00 35
 2017-06-20 00:10:00 21
 Freq: 5T, dtype: int32
ts.resample('5min',how='sum',closed='left')
C:\Program Files\anaconda\lib\site-packages\ipykernel\__main__.py:1: FutureWarning: how in .resample() is deprecated
 the new syntax is .resample(...).sum()
 if __name__ == '__main__':
 2017-06-20 00:00:00 10
 2017-06-20 00:05:00 35
 2017-06-20 00:10:00 21
 Freq: 5T, dtype: int32
ts.resample('5min',how='sum',closed='left',label ='left')
C:\Program Files\anaconda\lib\site-packages\ipykernel\__main__.py:1: FutureWarning: how in .resample() is deprecated
 the new syntax is .resample(...).sum()
 if __name__ == '__main__':
 2017-06-20 00:00:00 10
 2017-06-20 00:05:00 35
 2017-06-20 00:10:00 21
 Freq: 5T, dtype: int32

通过groupby进行重插样

另外一种降采样方法

ts1_index = pd.date_range('2017-6-01',periods = 100,freq = 'd')
ts1 = pd.Series(np.arange(100),index = ts1_index)
ts1.head()
2017-06-01 0
 2017-06-02 1
 2017-06-03 2
 2017-06-04 3
 2017-06-05 4
 Freq: D, dtype: int32
ts1.groupby(lambda x:x.month).mean()
6 14.5
 7 45.0
 8 76.0
 9 95.5
 dtype: float64
ts1.groupby(lambda x:x.weekday).mean()
0 49.5
 1 50.5
 2 51.5
 3 49.0
 4 50.0
 5 47.5
 6 48.5
 dtype: float64
df1 = pd.DataFrame(np.arange(200).reshape(100,2),index = ts1_index)
df1.groupby(lambda x:x.weekday).mean()

0 1
0 99 100
1 101 102
2 103 104
3 98 99
4 100 101
5 95 96
6 97 98

对于具有时间序列索引的pandas数据结构,当groupby传入一个函数时,可以对时间索引对应列进行聚合

升采样

升采样没有聚合,但是需要填充

df2 = pd.DataFrame(np.arange(200).reshape(100,2),index = ts1_index,columns=['add1','add2'])
df2.head()

add1 add2
2017-06-01 0 1
2017-06-02 2 3
2017-06-03 4 5
2017-06-04 6 7
2017-06-05 8 9
df2.resample('W-THU',fill_method = 'ffill')
C:\Program Files\anaconda\lib\site-packages\ipykernel\__main__.py:1: FutureWarning: fill_method is deprecated to .resample()
 the new syntax is .resample(...).ffill()
 if __name__ == '__main__':

add1 add2
2017-06-01 0 1
2017-06-08 14 15
2017-06-15 28 29
2017-06-22 42 43
2017-06-29 56 57
2017-07-06 70 71
2017-07-13 84 85
2017-07-20 98 99
2017-07-27 112 113
2017-08-03 126 127
2017-08-10 140 141
2017-08-17 154 155
2017-08-24 168 169
2017-08-31 182 183
2017-09-07 196 197
2017-09-14 198 199

总结

本篇博客主要内容:

1)生成指定时间段,指定频率的日期

2)对含有时间索引的pandas数据进行重采样,包括降采样和升采样等。

Python 相关文章推荐
Python代码实现KNN算法
Dec 20 Python
python实现生命游戏的示例代码(Game of Life)
Jan 24 Python
python中subprocess批量执行linux命令
Apr 27 Python
Centos下实现安装Python3.6和Python2共存
Aug 15 Python
解决PySide+Python子线程更新UI线程的问题
Jan 11 Python
使用Python进行体育竞技分析(预测球队成绩)
May 16 Python
python设计tcp数据包协议类的例子
Jul 23 Python
python实现飞机大战项目
Mar 11 Python
Mac PyCharm中的.gitignore 安装设置教程
Apr 16 Python
Python创建临时文件和文件夹
Aug 05 Python
使用numpngw和matplotlib生成png动画的示例代码
Jan 24 Python
python本地文件服务器实例教程
May 02 Python
python dataframe astype 字段类型转换方法
Apr 11 #Python
pandas series序列转化为星期几的实例
Apr 11 #Python
pandas的object对象转时间对象的方法
Apr 11 #Python
Python实现判断给定列表是否有重复元素的方法
Apr 11 #Python
python的dataframe转换为多维矩阵的方法
Apr 11 #Python
python的dataframe和matrix的互换方法
Apr 11 #Python
pandas DataFrame数据转为list的方法
Apr 11 #Python
You might like
php中的MVC模式运用技巧
2007/05/03 PHP
PHP垃圾回收机制简单说明
2010/07/22 PHP
简单实用的.net DataTable导出Execl
2013/10/28 PHP
PHP中提问频率最高的11个面试题和答案
2014/09/02 PHP
Jquery 高亮显示文本中重要的关键字
2009/12/24 Javascript
默认让页面的第一个控件选中的javascript代码
2009/12/26 Javascript
基于Jquery+Ajax+Json的高效分页实现代码
2011/10/29 Javascript
JavaScript模板入门介绍
2012/09/26 Javascript
js中Image对象以及对其预加载处理示例
2013/11/20 Javascript
微信分享的标题、缩略图、连接及描述设置方法
2014/10/14 Javascript
Angular开发者指南之入门介绍
2017/03/05 Javascript
NodeJS测试框架mocha入门教程
2017/03/28 NodeJs
JS正则表达式完美实现身份证校验功能
2017/10/18 Javascript
基于vue-ssr服务端渲染入门详解
2018/01/08 Javascript
layui实现鼠标移动到单元格上显示数据的方法
2019/09/11 Javascript
node 解析图片二维码的内容代码实例
2019/09/11 Javascript
[01:36:57]【09DOTA2第一视角】小骷髅
2014/04/16 DOTA
使用70行Python代码实现一个递归下降解析器的教程
2015/04/17 Python
在Python的Django框架中用流响应生成CSV文件的教程
2015/05/02 Python
Python实现iOS自动化打包详解步骤
2018/10/03 Python
django foreignkey(外键)的实现
2019/07/29 Python
解决TensorFlow模型恢复报错的问题
2020/02/06 Python
Python字典实现伪切片功能
2020/10/28 Python
Html5页面内使用JSON动画的实现
2019/01/29 HTML / CSS
奥地利网上现代灯具和灯饰店:Lampenwelt.at
2018/01/29 全球购物
泰国折扣酒店预订:Hotels2Thailand
2018/03/20 全球购物
Omio中国:全欧洲低价大巴、火车和航班搜索和比价
2018/08/09 全球购物
新闻记者实习自我鉴定
2013/09/19 职场文书
实习生求职自荐信
2014/02/07 职场文书
授权委托书公证
2014/09/14 职场文书
南京市纪委监察局整改方案
2014/09/16 职场文书
党员教师四风问题整改措施思想汇报
2014/10/08 职场文书
委托书格式要求
2015/01/28 职场文书
继续教育个人总结
2015/03/03 职场文书
晚会主持人开场白台词
2015/05/28 职场文书
家长意见书
2015/06/04 职场文书