python opencv人脸识别考勤系统的完整源码


Posted in Python onApril 26, 2021

如需安装运行环境或远程调试,可加QQ905733049, 或QQ2945218359由专业技术人员远程协助!

运行结果如下:

python opencv人脸识别考勤系统的完整源码

代码如下:

import wx
import wx.grid
from time import localtime,strftime
import os
import io
import zlib
import dlib  # 人脸识别的库dlib
import numpy as np  # 数据处理的库numpy
import cv2  # 图像处理的库OpenCv
import _thread
import threading
 
ID_NEW_REGISTER = 160
ID_FINISH_REGISTER = 161
 
ID_START_PUNCHCARD = 190
ID_END_PUNCARD = 191
 
ID_OPEN_LOGCAT = 283
ID_CLOSE_LOGCAT = 284
 
ID_WORKER_UNAVIABLE = -1
 
PATH_FACE = "data/face_img_database/"
# face recognition model, the object maps human faces into 128D vectors
facerec = dlib.face_recognition_model_v1("model/dlib_face_recognition_resnet_model_v1.dat")
# Dlib 预测器
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('model/shape_predictor_68_face_landmarks.dat')
 
class WAS(wx.Frame):
    def __init__(self):
        wx.Frame.__init__(self,parent=None,title="员工考勤系统",size=(920,560))
 
        self.initMenu()
        self.initInfoText()
        self.initGallery()
        self.initDatabase()
        self.initData()
 
    def initData(self):
        self.name = ""
        self.id =ID_WORKER_UNAVIABLE
        self.face_feature = ""
        self.pic_num = 0
        self.flag_registed = False
        self.puncard_time = "21:00:00"
        self.loadDataBase(1)
 
    def initMenu(self):
 
        menuBar = wx.MenuBar()  #生成菜单栏
        menu_Font = wx.Font()#Font(faceName="consolas",pointsize=20)
        menu_Font.SetPointSize(14)
        menu_Font.SetWeight(wx.BOLD)
 
 
        registerMenu = wx.Menu() #生成菜单
        self.new_register = wx.MenuItem(registerMenu,ID_NEW_REGISTER,"新建录入")
        self.new_register.SetBitmap(wx.Bitmap("drawable/new_register.png"))
        self.new_register.SetTextColour("SLATE BLUE")
        self.new_register.SetFont(menu_Font)
        registerMenu.Append(self.new_register)
 
        self.finish_register = wx.MenuItem(registerMenu,ID_FINISH_REGISTER,"完成录入")
        self.finish_register.SetBitmap(wx.Bitmap("drawable/finish_register.png"))
        self.finish_register.SetTextColour("SLATE BLUE")
        self.finish_register.SetFont(menu_Font)
        self.finish_register.Enable(False)
        registerMenu.Append(self.finish_register)
 
 
        puncardMenu = wx.Menu()
        self.start_punchcard = wx.MenuItem(puncardMenu,ID_START_PUNCHCARD,"开始签到")
        self.start_punchcard.SetBitmap(wx.Bitmap("drawable/start_punchcard.png"))
        self.start_punchcard.SetTextColour("SLATE BLUE")
        self.start_punchcard.SetFont(menu_Font)
        puncardMenu.Append(self.start_punchcard)
 
 
        self.close_logcat = wx.MenuItem(logcatMenu, ID_CLOSE_LOGCAT, "关闭日志")
        self.close_logcat.SetBitmap(wx.Bitmap("drawable/close_logcat.png"))
        self.close_logcat.SetFont(menu_Font)
        self.close_logcat.SetTextColour("SLATE BLUE")
        logcatMenu.Append(self.close_logcat)
 
        menuBar.Append(registerMenu,"&人脸录入")
        menuBar.Append(puncardMenu,"&刷脸签到")
        menuBar.Append(logcatMenu,"&考勤日志")
        self.SetMenuBar(menuBar)
 
        self.Bind(wx.EVT_MENU,self.OnNewRegisterClicked,id=ID_NEW_REGISTER)
        self.Bind(wx.EVT_MENU,self.OnFinishRegisterClicked,id=ID_FINISH_REGISTER)
        self.Bind(wx.EVT_MENU,self.OnStartPunchCardClicked,id=ID_START_PUNCHCARD)
        self.Bind(wx.EVT_MENU,self.OnEndPunchCardClicked,id=ID_END_PUNCARD)
        self.Bind(wx.EVT_MENU,self.OnOpenLogcatClicked,id=ID_OPEN_LOGCAT)
        self.Bind(wx.EVT_MENU,self.OnCloseLogcatClicked,id=ID_CLOSE_LOGCAT)
 
 
        pass
 
    def OnCloseLogcatClicked(self,event):
        self.SetSize(920,560)
 
        self.initGallery()
        pass
 
    def register_cap(self,event):
        # 创建 cv2 摄像头对象
        self.cap = cv2.VideoCapture(0)
        # cap.set(propId, value)
        # 设置视频参数,propId设置的视频参数,value设置的参数值
        # self.cap.set(3, 600)
        # self.cap.set(4,600)
        # cap是否初始化成功
        while self.cap.isOpened():
            # cap.read()
            # 返回两个值:
            #    一个布尔值true/false,用来判断读取视频是否成功/是否到视频末尾
            #    图像对象,图像的三维矩阵
            flag, im_rd = self.cap.read()
 
            # 每帧数据延时1ms,延时为0读取的是静态帧
            kk = cv2.waitKey(1)
            # 人脸数 dets
            dets = detector(im_rd, 1)
 
            # 检测到人脸
            if len(dets) != 0:
                biggest_face = dets[0]
                #取占比最大的脸
                maxArea = 0
                for det in dets:
                    w = det.right() - det.left()
                    h = det.top()-det.bottom()
                    if w*h > maxArea:
                        biggest_face = det
                        maxArea = w*h
                        # 绘制矩形框
 
                cv2.rectangle(im_rd, tuple([biggest_face.left(), biggest_face.top()]),
                                      tuple([biggest_face.right(), biggest_face.bottom()]),
                                      (255, 0, 0), 2)
                img_height, img_width = im_rd.shape[:2]
                image1 = cv2.cvtColor(im_rd, cv2.COLOR_BGR2RGB)
                pic = wx.Bitmap.FromBuffer(img_width, img_height, image1)
                # 显示图片在panel上
                self.bmp.SetBitmap(pic)
 
                # 获取当前捕获到的图像的所有人脸的特征,存储到 features_cap_arr
                shape = predictor(im_rd, biggest_face)
                features_cap = facerec.compute_face_descriptor(im_rd, shape)
 
                # 对于某张人脸,遍历所有存储的人脸特征
                for i,knew_face_feature in enumerate(self.knew_face_feature):
                    # 将某张人脸与存储的所有人脸数据进行比对
                    compare = return_euclidean_distance(features_cap, knew_face_feature)
                    if compare == "same":  # 找到了相似脸
                        self.infoText.AppendText(self.getDateAndTime()+"工号:"+str(self.knew_id[i])
                                                 +" 姓名:"+self.knew_name[i]+" 的人脸数据已存在\r\n")
                        self.flag_registed = True
                        self.OnFinishRegister()
                        _thread.exit()
 
                        # print(features_known_arr[i][-1])
                face_height = biggest_face.bottom()-biggest_face.top()
                face_width = biggest_face.right()- biggest_face.left()
                im_blank = np.zeros((face_height, face_width, 3), np.uint8)
                try:
                    for ii in range(face_height):
                        for jj in range(face_width):
                            im_blank[ii][jj] = im_rd[biggest_face.top() + ii]parent=self.bmp,max=100000000,min=ID_WORKER_UNAVIABLE)
            for knew_id in self.knew_id:
                if knew_id == self.id:
                    self.id = ID_WORKER_UNAVIABLE
                    wx.MessageBox(message="工号已存在,请重新输入", caption="警告")
 
        while self.name == '':
            self.name = wx.GetTextFromUser(message="请输入您的的姓名,用于创建姓名文件夹",
                                           caption="温馨提示",
                                      default_value="", parent=self.bmp)
 
            # 监测是否重名
            for exsit_name in (os.listdir(PATH_FACE)):
                if self.name == exsit_name:
                    wx.MessageBox(message="姓名文件夹已存在,请重新输入", caption="警告")
                    self.name = ''
                    break
        os.makedirs(PATH_FACE+self.name)
        _thread.start_new_thread(self.register_cap,(event,))
        pass
 
    def OnFinishRegister(self):
 
        self.new_register.Enable(True)
        self.finish_register.Enable(False)
        self.cap.release()
 
        self.bmp.SetBitmap(wx.Bitmap(self.pic_index))
        if self.flag_registed == True:
            dir = PATH_FACE + self.name
            for file in os.listdir(dir):
                os.remove(dir+"/"+file)
                print("已删除已录入人脸的图片", dir+"/"+file)
            os.rmdir(PATH_FACE + self.name)
            print("已删除已录入人脸的姓名文件夹", dir)
            self.initData()
            return
        if self.pic_num>0:
            pics = os.listdir(PATH_FACE + self.name)
            feature_list = []
            feature_average = []
            for i in range(len(pics)):
                pic_path = PATH_FACE + self.name + "/" + pics[i]
                print("正在读的人脸图像:", pic_path)
                img = iio.imread(pic_path)
                img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
                dets = detector(img_gray, 1)
                if len(dets) != 0:
                    shape = predictor(img_gray, dets[0])
                    face_descriptor = facerec.compute_face_descriptor(img_gray, shape)
                    feature_list.append(face_descriptor)
                else:
                    face_descriptor = 0
                    print("未在照片中识别到人脸")
            if len(feature_list) > 0:
                for j in range(128):
                    #防止越界
                    feature_average.append(0)
                    for i in range(len(feature_list)):
                        feature_average[j] += feature_list[i][j]
                    feature_average[j] = (feature_average[j]) / len(feature_list)
                self.insertARow([self.id,self.name,feature_average],1)
                self.infoText.AppendText(self.getDateAndTime()+"工号:"+str(self.id)
                                     +" 姓名:"+self.name+" 的人脸数据已成功存入\r\n")
            pass
 
        else:
            os.rmdir(PATH_FACE + self.name)
            print("已删除空文件夹",PATH_FACE + self.name)
        self.initData()
 
    def OnFinishRegisterClicked(self,event):
        self.OnFinishRegister()
        pass
 
 
    def OnStartPunchCardClicked(self,event):
        # cur_hour = datetime.datetime.now().hour
        # print(cur_hour)
        # if cur_hour>=8 or cur_hour<6:
        #     wx.MessageBox(message='''您错过了今天的签到时间,请明天再来\n
        #     每天的签到时间是:6:00~7:59''', caption="警告")
        #     return
        self.start_punchcard.Enable(False)
        self.end_puncard.Enable(True)
        self.loadDataBase(2)
        threading.Thread(target=self.punchcard_cap,args=(event,)).start()
        #_thread.start_new_thread(self.punchcard_cap,(event,))
        pass
 
    def OnEndPunchCardClicked(self,event):
        self.start_punchcard.Enable(True)
        self.end_puncard.Enable(False)
        pass
 
 
    def initGallery(self):
        self.pic_index = wx.Image("drawable/index.png", wx.BITMAP_TYPE_ANY).Scale(600, 500)
        self.bmp = wx.StaticBitmap(parent=self, pos=(320,0), bitmap=wx.Bitmap(self.pic_index))
        pass
 
    def getDateAndTime(self):
        dateandtime = strftime("%Y-%m-%d %H:%M:%S",localtime())
        return "["+dateandtime+"]"
 
    #数据库部分
    #初始化数据库
    def initDatabase(self):
        conn = sqlite3.connect("inspurer.db")  #建立数据库连接
        cur = conn.cursor()             #得到游标对象
        cur.execute('''create table if not exists worker_info
        (name text not null,
        id int not null primary key,
        face_feature array not null)''')
        cur.execute('''create table if not exists logcat
         (datetime text not null,
         id int not null,
         name text not null,
         late text not null)''')
        cur.close()
        conn.commit()
        conn.close()
 
    def adapt_array(self,arr):
        out = io.BytesIO()
        np.save(out, arr)
        out.seek(0)
 
        dataa = out.read()
        # 压缩数据流
        return sqlite3.Binary(zlib.compress(dataa, zlib.Z_BEST_COMPRESSION))
 
    def convert_array(self,text):
        out = io.BytesIO(text)
        out.seek(0)
 
        dataa = out.read()
        # 解压缩数据流
        out = io.BytesIO(zlib.decompress(dataa))
        return np.load(out)
 
    def insertARow(self,Row,type):
        conn = sqlite3.connect("inspurer.db")  # 建立数据库连接
        cur = conn.cursor()  # 得到游标对象
        if type == 1:
            cur.execute("insert into worker_info (id,name,face_feature) values(?,?,?)",
                    (Row[0],Row[1],self.adapt_array(Row[2])))
            print("写人脸数据成功")
        if type == 2:
            cur.execute("insert into logcat (id,name,datetime,late) values(?,?,?,?)",
                        (Row[0],Row[1],Row[2],Row[3]))
            print("写日志成功")
            pass
        cur.close()
        conn.commit()
        conn.close()
        pass
 
    def loadDataBase(self,type):
 
        conn = sqlite3.connect("inspurer.db")  # 建立数据库连接
        cur = conn.cursor()  # 得到游标对象
 
        if type == 1:
            self.knew_id = []
            self.knew_name = []
            self.knew_face_feature = []
            cur.execute('select id,name,face_feature from worker_info')
            origin = cur.fetchall()
            for row in origin:
                print(row[0])
                self.knew_id.append(row[0])
                print(row[1])
                self.knew_name.append(row[1])
                print(self.convert_array(row[2]))
                self.knew_face_feature.append(self.convert_array(row[2]))
        if type == 2:
            self.logcat_id = []
            self.logcat_name = []
            self.logcat_datetime = []
            self.logcat_late = []
            cur.execute('select id,name,datetime,late from logcat')
            origin = cur.fetchall()
            for row in origin:
                print(row[0])
                self.logcat_id.append(row[0])
                print(row[1])
                self.logcat_name.append(row[1])
                print(row[2])
                self.logcat_datetime.append(row[2])
                print(row[3])
                self.logcat_late.append(row[3])
        pass
app = wx.App()
frame = WAS()
frame.Show()
app.MainLoop()

到此这篇关于python opencv人脸识别考勤系统的完整源码的文章就介绍到这了,更多相关python 人脸识别考勤系统内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python ljust rjust center输出
Sep 06 Python
Python中max函数用法实例分析
Jul 17 Python
基于Python 的进程管理工具supervisor使用指南
Sep 18 Python
Python实现的中国剩余定理算法示例
Aug 05 Python
numpy concatenate数组拼接方法示例介绍
May 27 Python
numpy和pandas中数组的合并、拉直和重塑实例
Jun 28 Python
django自带调试服务器的使用详解
Aug 29 Python
基于python plotly交互式图表大全
Dec 07 Python
python每5分钟从kafka中提取数据的例子
Dec 23 Python
使用python采集Excel表中某一格数据
May 14 Python
基于Python模拟浏览器发送http请求
Nov 06 Python
Python中的 enumerate和zip详情
May 30 Python
python实现监听键盘
Apr 26 #Python
python如何做代码性能分析
Apr 26 #Python
Python字符串对齐方法使用(ljust()、rjust()和center())
Apr 26 #Python
python如何进行基准测试
Apr 26 #Python
python实现简单的名片管理系统
Python实战之实现康威生命游戏
Python 制作自动化翻译工具
You might like
深入解析PHP的引用计数机制
2013/06/14 PHP
yii框架通过控制台命令创建定时任务示例
2014/04/30 PHP
PHP文件系统管理(实例讲解)
2017/09/19 PHP
php判断文件上传图片格式的实例详解
2017/09/30 PHP
Smarty模板配置实例简析
2019/07/20 PHP
用JTrackBar实现的模拟苹果风格的滚动条
2007/08/06 Javascript
JavaScript入门教程 Cookies
2009/01/31 Javascript
基于jquery的一个图片hover的插件
2010/04/24 Javascript
JS字符串函数扩展代码
2011/09/13 Javascript
JQuery验证jsp页面属性是否为空(实例代码)
2013/11/08 Javascript
jQuery zclip插件实现跨浏览器复制功能
2015/11/02 Javascript
Javascript页面跳转常见实现方式汇总
2015/11/28 Javascript
自定义Angular指令与jQuery实现的Bootstrap风格数据双向绑定的单选与多选下拉框
2015/12/12 Javascript
js字符串截取函数slice、substring和substr的比较
2016/05/17 Javascript
JQuery.validate在ie8下不支持的快速解决方法
2016/05/18 Javascript
JavaScript 监控微信浏览器且自带返回按钮时间
2016/11/27 Javascript
jQGrid Table操作列中点击【操作】按钮弹出按钮层的实现代码
2016/12/05 Javascript
微信小程序中实现一对多发消息详解及实例代码
2017/02/14 Javascript
webpack配置之后端渲染详解
2017/10/26 Javascript
JavaScript, select标签元素左右移动功能实现
2020/05/14 Javascript
python中os操作文件及文件路径实例汇总
2015/01/15 Python
python实现查找两个字符串中相同字符并输出的方法
2015/07/11 Python
Python Subprocess模块原理及实例
2019/08/26 Python
使用tensorflow进行音乐类型的分类
2020/08/14 Python
销售所有的狗狗产品:Dog.com
2016/10/13 全球购物
Omio美国:全欧洲低价大巴、火车和航班搜索和比价
2017/11/08 全球购物
意大利时尚精品店:Nugnes 1920
2020/02/10 全球购物
垃圾回收的优点和原理
2014/05/16 面试题
网页美工求职信
2014/02/15 职场文书
班级学习雷锋活动总结
2014/07/04 职场文书
教师节横幅标语
2014/10/08 职场文书
餐厅保洁员岗位职责
2015/04/10 职场文书
大学生奶茶店创业计划书
2019/06/25 职场文书
python实现简单的聊天小程序
2021/07/07 Python
css3中transform属性实现的4种功能
2021/08/07 HTML / CSS
【海涛七七解说】DCG第二周:DK VS 天禄
2022/04/01 DOTA