python opencv人脸识别考勤系统的完整源码


Posted in Python onApril 26, 2021

如需安装运行环境或远程调试,可加QQ905733049, 或QQ2945218359由专业技术人员远程协助!

运行结果如下:

python opencv人脸识别考勤系统的完整源码

代码如下:

import wx
import wx.grid
from time import localtime,strftime
import os
import io
import zlib
import dlib  # 人脸识别的库dlib
import numpy as np  # 数据处理的库numpy
import cv2  # 图像处理的库OpenCv
import _thread
import threading
 
ID_NEW_REGISTER = 160
ID_FINISH_REGISTER = 161
 
ID_START_PUNCHCARD = 190
ID_END_PUNCARD = 191
 
ID_OPEN_LOGCAT = 283
ID_CLOSE_LOGCAT = 284
 
ID_WORKER_UNAVIABLE = -1
 
PATH_FACE = "data/face_img_database/"
# face recognition model, the object maps human faces into 128D vectors
facerec = dlib.face_recognition_model_v1("model/dlib_face_recognition_resnet_model_v1.dat")
# Dlib 预测器
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('model/shape_predictor_68_face_landmarks.dat')
 
class WAS(wx.Frame):
    def __init__(self):
        wx.Frame.__init__(self,parent=None,title="员工考勤系统",size=(920,560))
 
        self.initMenu()
        self.initInfoText()
        self.initGallery()
        self.initDatabase()
        self.initData()
 
    def initData(self):
        self.name = ""
        self.id =ID_WORKER_UNAVIABLE
        self.face_feature = ""
        self.pic_num = 0
        self.flag_registed = False
        self.puncard_time = "21:00:00"
        self.loadDataBase(1)
 
    def initMenu(self):
 
        menuBar = wx.MenuBar()  #生成菜单栏
        menu_Font = wx.Font()#Font(faceName="consolas",pointsize=20)
        menu_Font.SetPointSize(14)
        menu_Font.SetWeight(wx.BOLD)
 
 
        registerMenu = wx.Menu() #生成菜单
        self.new_register = wx.MenuItem(registerMenu,ID_NEW_REGISTER,"新建录入")
        self.new_register.SetBitmap(wx.Bitmap("drawable/new_register.png"))
        self.new_register.SetTextColour("SLATE BLUE")
        self.new_register.SetFont(menu_Font)
        registerMenu.Append(self.new_register)
 
        self.finish_register = wx.MenuItem(registerMenu,ID_FINISH_REGISTER,"完成录入")
        self.finish_register.SetBitmap(wx.Bitmap("drawable/finish_register.png"))
        self.finish_register.SetTextColour("SLATE BLUE")
        self.finish_register.SetFont(menu_Font)
        self.finish_register.Enable(False)
        registerMenu.Append(self.finish_register)
 
 
        puncardMenu = wx.Menu()
        self.start_punchcard = wx.MenuItem(puncardMenu,ID_START_PUNCHCARD,"开始签到")
        self.start_punchcard.SetBitmap(wx.Bitmap("drawable/start_punchcard.png"))
        self.start_punchcard.SetTextColour("SLATE BLUE")
        self.start_punchcard.SetFont(menu_Font)
        puncardMenu.Append(self.start_punchcard)
 
 
        self.close_logcat = wx.MenuItem(logcatMenu, ID_CLOSE_LOGCAT, "关闭日志")
        self.close_logcat.SetBitmap(wx.Bitmap("drawable/close_logcat.png"))
        self.close_logcat.SetFont(menu_Font)
        self.close_logcat.SetTextColour("SLATE BLUE")
        logcatMenu.Append(self.close_logcat)
 
        menuBar.Append(registerMenu,"&人脸录入")
        menuBar.Append(puncardMenu,"&刷脸签到")
        menuBar.Append(logcatMenu,"&考勤日志")
        self.SetMenuBar(menuBar)
 
        self.Bind(wx.EVT_MENU,self.OnNewRegisterClicked,id=ID_NEW_REGISTER)
        self.Bind(wx.EVT_MENU,self.OnFinishRegisterClicked,id=ID_FINISH_REGISTER)
        self.Bind(wx.EVT_MENU,self.OnStartPunchCardClicked,id=ID_START_PUNCHCARD)
        self.Bind(wx.EVT_MENU,self.OnEndPunchCardClicked,id=ID_END_PUNCARD)
        self.Bind(wx.EVT_MENU,self.OnOpenLogcatClicked,id=ID_OPEN_LOGCAT)
        self.Bind(wx.EVT_MENU,self.OnCloseLogcatClicked,id=ID_CLOSE_LOGCAT)
 
 
        pass
 
    def OnCloseLogcatClicked(self,event):
        self.SetSize(920,560)
 
        self.initGallery()
        pass
 
    def register_cap(self,event):
        # 创建 cv2 摄像头对象
        self.cap = cv2.VideoCapture(0)
        # cap.set(propId, value)
        # 设置视频参数,propId设置的视频参数,value设置的参数值
        # self.cap.set(3, 600)
        # self.cap.set(4,600)
        # cap是否初始化成功
        while self.cap.isOpened():
            # cap.read()
            # 返回两个值:
            #    一个布尔值true/false,用来判断读取视频是否成功/是否到视频末尾
            #    图像对象,图像的三维矩阵
            flag, im_rd = self.cap.read()
 
            # 每帧数据延时1ms,延时为0读取的是静态帧
            kk = cv2.waitKey(1)
            # 人脸数 dets
            dets = detector(im_rd, 1)
 
            # 检测到人脸
            if len(dets) != 0:
                biggest_face = dets[0]
                #取占比最大的脸
                maxArea = 0
                for det in dets:
                    w = det.right() - det.left()
                    h = det.top()-det.bottom()
                    if w*h > maxArea:
                        biggest_face = det
                        maxArea = w*h
                        # 绘制矩形框
 
                cv2.rectangle(im_rd, tuple([biggest_face.left(), biggest_face.top()]),
                                      tuple([biggest_face.right(), biggest_face.bottom()]),
                                      (255, 0, 0), 2)
                img_height, img_width = im_rd.shape[:2]
                image1 = cv2.cvtColor(im_rd, cv2.COLOR_BGR2RGB)
                pic = wx.Bitmap.FromBuffer(img_width, img_height, image1)
                # 显示图片在panel上
                self.bmp.SetBitmap(pic)
 
                # 获取当前捕获到的图像的所有人脸的特征,存储到 features_cap_arr
                shape = predictor(im_rd, biggest_face)
                features_cap = facerec.compute_face_descriptor(im_rd, shape)
 
                # 对于某张人脸,遍历所有存储的人脸特征
                for i,knew_face_feature in enumerate(self.knew_face_feature):
                    # 将某张人脸与存储的所有人脸数据进行比对
                    compare = return_euclidean_distance(features_cap, knew_face_feature)
                    if compare == "same":  # 找到了相似脸
                        self.infoText.AppendText(self.getDateAndTime()+"工号:"+str(self.knew_id[i])
                                                 +" 姓名:"+self.knew_name[i]+" 的人脸数据已存在\r\n")
                        self.flag_registed = True
                        self.OnFinishRegister()
                        _thread.exit()
 
                        # print(features_known_arr[i][-1])
                face_height = biggest_face.bottom()-biggest_face.top()
                face_width = biggest_face.right()- biggest_face.left()
                im_blank = np.zeros((face_height, face_width, 3), np.uint8)
                try:
                    for ii in range(face_height):
                        for jj in range(face_width):
                            im_blank[ii][jj] = im_rd[biggest_face.top() + ii]parent=self.bmp,max=100000000,min=ID_WORKER_UNAVIABLE)
            for knew_id in self.knew_id:
                if knew_id == self.id:
                    self.id = ID_WORKER_UNAVIABLE
                    wx.MessageBox(message="工号已存在,请重新输入", caption="警告")
 
        while self.name == '':
            self.name = wx.GetTextFromUser(message="请输入您的的姓名,用于创建姓名文件夹",
                                           caption="温馨提示",
                                      default_value="", parent=self.bmp)
 
            # 监测是否重名
            for exsit_name in (os.listdir(PATH_FACE)):
                if self.name == exsit_name:
                    wx.MessageBox(message="姓名文件夹已存在,请重新输入", caption="警告")
                    self.name = ''
                    break
        os.makedirs(PATH_FACE+self.name)
        _thread.start_new_thread(self.register_cap,(event,))
        pass
 
    def OnFinishRegister(self):
 
        self.new_register.Enable(True)
        self.finish_register.Enable(False)
        self.cap.release()
 
        self.bmp.SetBitmap(wx.Bitmap(self.pic_index))
        if self.flag_registed == True:
            dir = PATH_FACE + self.name
            for file in os.listdir(dir):
                os.remove(dir+"/"+file)
                print("已删除已录入人脸的图片", dir+"/"+file)
            os.rmdir(PATH_FACE + self.name)
            print("已删除已录入人脸的姓名文件夹", dir)
            self.initData()
            return
        if self.pic_num>0:
            pics = os.listdir(PATH_FACE + self.name)
            feature_list = []
            feature_average = []
            for i in range(len(pics)):
                pic_path = PATH_FACE + self.name + "/" + pics[i]
                print("正在读的人脸图像:", pic_path)
                img = iio.imread(pic_path)
                img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
                dets = detector(img_gray, 1)
                if len(dets) != 0:
                    shape = predictor(img_gray, dets[0])
                    face_descriptor = facerec.compute_face_descriptor(img_gray, shape)
                    feature_list.append(face_descriptor)
                else:
                    face_descriptor = 0
                    print("未在照片中识别到人脸")
            if len(feature_list) > 0:
                for j in range(128):
                    #防止越界
                    feature_average.append(0)
                    for i in range(len(feature_list)):
                        feature_average[j] += feature_list[i][j]
                    feature_average[j] = (feature_average[j]) / len(feature_list)
                self.insertARow([self.id,self.name,feature_average],1)
                self.infoText.AppendText(self.getDateAndTime()+"工号:"+str(self.id)
                                     +" 姓名:"+self.name+" 的人脸数据已成功存入\r\n")
            pass
 
        else:
            os.rmdir(PATH_FACE + self.name)
            print("已删除空文件夹",PATH_FACE + self.name)
        self.initData()
 
    def OnFinishRegisterClicked(self,event):
        self.OnFinishRegister()
        pass
 
 
    def OnStartPunchCardClicked(self,event):
        # cur_hour = datetime.datetime.now().hour
        # print(cur_hour)
        # if cur_hour>=8 or cur_hour<6:
        #     wx.MessageBox(message='''您错过了今天的签到时间,请明天再来\n
        #     每天的签到时间是:6:00~7:59''', caption="警告")
        #     return
        self.start_punchcard.Enable(False)
        self.end_puncard.Enable(True)
        self.loadDataBase(2)
        threading.Thread(target=self.punchcard_cap,args=(event,)).start()
        #_thread.start_new_thread(self.punchcard_cap,(event,))
        pass
 
    def OnEndPunchCardClicked(self,event):
        self.start_punchcard.Enable(True)
        self.end_puncard.Enable(False)
        pass
 
 
    def initGallery(self):
        self.pic_index = wx.Image("drawable/index.png", wx.BITMAP_TYPE_ANY).Scale(600, 500)
        self.bmp = wx.StaticBitmap(parent=self, pos=(320,0), bitmap=wx.Bitmap(self.pic_index))
        pass
 
    def getDateAndTime(self):
        dateandtime = strftime("%Y-%m-%d %H:%M:%S",localtime())
        return "["+dateandtime+"]"
 
    #数据库部分
    #初始化数据库
    def initDatabase(self):
        conn = sqlite3.connect("inspurer.db")  #建立数据库连接
        cur = conn.cursor()             #得到游标对象
        cur.execute('''create table if not exists worker_info
        (name text not null,
        id int not null primary key,
        face_feature array not null)''')
        cur.execute('''create table if not exists logcat
         (datetime text not null,
         id int not null,
         name text not null,
         late text not null)''')
        cur.close()
        conn.commit()
        conn.close()
 
    def adapt_array(self,arr):
        out = io.BytesIO()
        np.save(out, arr)
        out.seek(0)
 
        dataa = out.read()
        # 压缩数据流
        return sqlite3.Binary(zlib.compress(dataa, zlib.Z_BEST_COMPRESSION))
 
    def convert_array(self,text):
        out = io.BytesIO(text)
        out.seek(0)
 
        dataa = out.read()
        # 解压缩数据流
        out = io.BytesIO(zlib.decompress(dataa))
        return np.load(out)
 
    def insertARow(self,Row,type):
        conn = sqlite3.connect("inspurer.db")  # 建立数据库连接
        cur = conn.cursor()  # 得到游标对象
        if type == 1:
            cur.execute("insert into worker_info (id,name,face_feature) values(?,?,?)",
                    (Row[0],Row[1],self.adapt_array(Row[2])))
            print("写人脸数据成功")
        if type == 2:
            cur.execute("insert into logcat (id,name,datetime,late) values(?,?,?,?)",
                        (Row[0],Row[1],Row[2],Row[3]))
            print("写日志成功")
            pass
        cur.close()
        conn.commit()
        conn.close()
        pass
 
    def loadDataBase(self,type):
 
        conn = sqlite3.connect("inspurer.db")  # 建立数据库连接
        cur = conn.cursor()  # 得到游标对象
 
        if type == 1:
            self.knew_id = []
            self.knew_name = []
            self.knew_face_feature = []
            cur.execute('select id,name,face_feature from worker_info')
            origin = cur.fetchall()
            for row in origin:
                print(row[0])
                self.knew_id.append(row[0])
                print(row[1])
                self.knew_name.append(row[1])
                print(self.convert_array(row[2]))
                self.knew_face_feature.append(self.convert_array(row[2]))
        if type == 2:
            self.logcat_id = []
            self.logcat_name = []
            self.logcat_datetime = []
            self.logcat_late = []
            cur.execute('select id,name,datetime,late from logcat')
            origin = cur.fetchall()
            for row in origin:
                print(row[0])
                self.logcat_id.append(row[0])
                print(row[1])
                self.logcat_name.append(row[1])
                print(row[2])
                self.logcat_datetime.append(row[2])
                print(row[3])
                self.logcat_late.append(row[3])
        pass
app = wx.App()
frame = WAS()
frame.Show()
app.MainLoop()

到此这篇关于python opencv人脸识别考勤系统的完整源码的文章就介绍到这了,更多相关python 人脸识别考勤系统内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python pass 语句使用示例
Mar 11 Python
python time模块用法实例详解
Sep 11 Python
Python制作爬虫抓取美女图
Jan 20 Python
Python使用logging结合decorator模式实现优化日志输出的方法
Apr 16 Python
Python中用字符串调用函数或方法示例代码
Aug 04 Python
python贪婪匹配以及多行匹配的实例讲解
Apr 19 Python
Python 一键制作微信好友图片墙的方法
May 16 Python
bluepy 一款python封装的BLE利器简单介绍
Jun 25 Python
解决django 新增加用户信息出现错误的问题
Jul 28 Python
Python打印特殊符号及对应编码解析
May 07 Python
Python jieba结巴分词原理及用法解析
Nov 05 Python
利用python进行文件操作
Dec 04 Python
python实现监听键盘
Apr 26 #Python
python如何做代码性能分析
Apr 26 #Python
Python字符串对齐方法使用(ljust()、rjust()和center())
Apr 26 #Python
python如何进行基准测试
Apr 26 #Python
python实现简单的名片管理系统
Python实战之实现康威生命游戏
Python 制作自动化翻译工具
You might like
通过PHP修改Linux或Unix口令的方法分享
2012/01/30 PHP
php 检查电子邮件函数(自写)
2014/01/16 PHP
PHP中防止SQL注入方法详解
2014/12/25 PHP
Yii2超好用的日期和时间组件(值得收藏)
2016/05/05 PHP
Yii框架连接mongodb数据库的代码
2016/07/27 PHP
PHP PDOStatement::fetchObject讲解
2019/02/01 PHP
浅谈Laravel模板实体转义带来的坑
2019/10/22 PHP
jQuery父级以及同级元素查找介绍
2013/09/04 Javascript
js使用数组判断提交数据是否存在相同数据
2013/11/27 Javascript
NODE.JS加密模块CRYPTO常用方法介绍
2014/06/05 Javascript
Javascript函数的参数
2015/07/16 Javascript
Angular发布1.5正式版,专注于向Angular 2的过渡
2016/02/18 Javascript
基于HTML5上使用iScroll实现下拉刷新,上拉加载更多
2016/05/21 Javascript
jQuery设置Easyui校验规则(推荐)
2016/11/21 Javascript
基于Marquee.js插件实现的跑马灯效果示例
2017/01/25 Javascript
uploader秒传图片到服务器完整代码
2017/04/22 Javascript
Vue.js中extend选项和delimiters选项的比较
2017/07/17 Javascript
vue获取dom元素注意事项
2017/12/28 Javascript
webstorm中vue语法的支持详解
2018/05/09 Javascript
使用js实现将后台传入的json数据放在前台显示
2018/08/06 Javascript
vue-cli3全面配置详解
2018/11/14 Javascript
快速了解Node中的Stream流是什么
2019/02/13 Javascript
微信小程序前端promise封装代码实例
2019/08/24 Javascript
微信小程序 获取手机号 JavaScript解密示例代码详解
2020/05/14 Javascript
[02:20]DOTA2英雄基础教程 黑暗贤者
2013/12/19 DOTA
Python学习小技巧之利用字典的默认行为
2017/05/20 Python
简单实现python画圆功能
2018/01/25 Python
python实现傅里叶级数展开的实现
2018/07/21 Python
如何使用python把ppt转换成pdf
2019/06/29 Python
简单了解python中的f.b.u.r函数
2019/11/02 Python
Java如何格式化日期
2012/08/07 面试题
人事部岗位职责范本
2014/03/05 职场文书
《冬阳童年骆驼队》教学反思
2014/04/15 职场文书
推广活动策划方案
2014/08/23 职场文书
2016年教代会开幕词
2016/03/04 职场文书
HTML 里 img 元素的 src 和 srcset 属性的区别详解
2023/05/21 HTML / CSS