PySwarms(Python粒子群优化工具包)的使用:GlobalBestPSO例子解析

前段时间需要用到粒子群优化算法来求取全局最优解,这个问题用PySwarms来解决。奈何没有搜索到什么中文文档讲解使用方法,只能抱着英文文档慢慢啃了QAQ。所以这里把个人见解写了下来,希望能和有需求的朋友交流。

Posted in Python onApril 05, 2021

这里将主要解析Inverse Kinematics Problem这个官方例子,以及从中学到如何使用GlobalBestPSO

Inverse Kinematics Problem(运动学逆问题)

问题官网网站如下(此问题所有代码均来自官网):https://pyswarms.readthedocs.io/en/latest/examples/usecases/inverse_kinematics.html

问题背景

逆运动学是机器人技术中最具挑战性的问题之一。IK坐标难以计算且多解,所以特别困难。现在可以为3自由度机械手找到简单的解决方案,但是尝试解决6自由度甚至更多自由度的问题可能会出现富有挑战性的代数问题。

在此例中,我们将使用具有5个旋转关节和1个棱柱关节的6自由度斯坦福机械臂。这些关节的活动范围如下所示:
PySwarms(Python粒子群优化工具包)的使用:GlobalBestPSO例子解析
现在,如果给定了末端位置(在本例中为xyz坐标),则需要找到具有上表约束的最佳参数。这些条件足以将这个问题视为优化问题。我们将参数向量X定义如下:
PySwarms(Python粒子群优化工具包)的使用:GlobalBestPSO例子解析
对于末端位置,我们将目标向量T定义为:
PySwarms(Python粒子群优化工具包)的使用:GlobalBestPSO例子解析
下面就开始解决具体问题吧!

原文后续就开始大致讲解粒子群优化算法的原理,不明白的朋友可以看这篇博客,讲解得很清楚。
最优化算法之粒子群算法(PSO)

有关粒子群优化算法的原理这里就不再赘述了。

准备工作

首先导入相关包:

# Import modules
import numpy as np
# Import PySwarms
import pyswarms as ps

我们以点[−2,2,3]作为目标,希望该点为最佳机械手姿势。首先定义一个函数来获取从当前位置到目标位置的距离(可以看出此距离函数就是求两位置间的欧氏距离):

def distance(query, target):
    x_dist = (target[0] - query[0])**2
    y_dist = (target[1] - query[1])**2
    z_dist = (target[2] - query[2])**2
    dist = np.sqrt(x_dist + y_dist + z_dist)
    return dist

我们将使用此距离函数来计算代价,显然距离越远,距离代价就越高。

下面开始设置算法需要的参数:

swarm_size = 20
dim = 6        # Dimension of X
epsilon = 1.0
options = {'c1': 1.5, 'c2':1.5, 'w':0.5}

constraints = (np.array([-np.pi , -np.pi/2 , 1 , -np.pi , -5*np.pi/36 , -np.pi]),
               np.array([np.pi  ,  np.pi/2 , 3 ,  np.pi ,  5*np.pi/36 ,  np.pi]))

d1 = d2 = d3 = d4 = d5 = d6 = 3

swarm_size为粒子个数;dim为待求参数的维度;epsilon后续也没有用到,我也不太明白放在这里的用意,如有大佬告知,不胜感激;options为重要的参数列表,c1为粒子的个体认知系数,c2为群体系数系数,w为惯性因子;constraints为待求参数取值限制;d1~d6为关节长度,均取3。(有关API参数的含义和注意事项后面会详细介绍

为了获得当前位置,我们需要计算每个关节的旋转和平移矩阵。为此,这里我们使用Denvait-Hartenberg参数。我们定义了一个计算这些矩阵的函数。该函数使用旋转角度和棱柱形关节的延伸量d作为输入(不用担心不明白这是啥参数矩阵,不用明白,只需要知道输入一些参数返回一个矩阵就好):

def getTransformMatrix(theta, d, a, alpha):
    T = np.array([[np.cos(theta) , -np.sin(theta)*np.cos(alpha) ,  np.sin(theta)*np.sin(alpha) , a*np.cos(theta)],
                  [np.sin(theta) ,  np.cos(theta)*np.cos(alpha) , -np.cos(theta)*np.sin(alpha) , a*np.sin(theta)],
                  [0             ,  np.sin(alpha)               ,  np.cos(alpha)               , d              ],
                  [0             ,  0                           ,  0                           , 1              ]
                 ])
    return T

现在我们可以计算变换矩阵以获得末端的位置。为此,我们创建了另一个函数,该函数将向量X与关节变量作为输入(同样不需要知道怎么算的,只需要知道输入和输出是什么就好):

def get_end_tip_position(params):
    # Create the transformation matrices for the respective joints
    t_00 = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]])
    t_01 = getTransformMatrix(params[0] , d2        , 0 , -np.pi/2)
    t_12 = getTransformMatrix(params[1] , d2        , 0 , -np.pi/2)
    t_23 = getTransformMatrix(0         , params[2] , 0 , -np.pi/2)
    t_34 = getTransformMatrix(params[3] , d4        , 0 , -np.pi/2)
    t_45 = getTransformMatrix(params[4] , 0         , 0 ,  np.pi/2)
    t_56 = getTransformMatrix(params[5] , d6        ,0  ,  0)

    # Get the overall transformation matrix
    end_tip_m = t_00.dot(t_01).dot(t_12).dot(t_23).dot(t_34).dot(t_45).dot(t_56)

    # The coordinates of the end tip are the 3 upper entries in the 4th column
    pos = np.array([end_tip_m[0,3],end_tip_m[1,3],end_tip_m[2,3]])
    return pos

为了运行算法,我们需要准备的最后一件事就是我们要优化的函数。我们只需要计算每个群体粒子的位置与目标点之间的距离即可(这里就是运用到前面定义的函数get_end_tip_position进行计算X[i]的末端位置,再运用distance函数计算此位置与目标点之间的距离,返回这个距离数组):

def opt_func(X):
    n_particles = X.shape[0]  # number of particles
    target = np.array([-2,2,3])
    dist = [distance(get_end_tip_position(X[i]), target) for i in range(n_particles)]
    return np.array(dist)

运行算法

经过上述准备,我们终于可以开始实现算法了!

# Call an instance of PSO
optimizer = ps.single.GlobalBestPSO(n_particles=swarm_size,
                                    dimensions=dim,
                                    options=options,
                                    bounds=constraints)

# Perform optimization
cost, joint_vars = optimizer.optimize(opt_func, iters=1000)

很简单的样子!?(并没有,自己写待优化函数的时候呢QAQ)代入上面说的参数实例化一个全局最优器对象,再调用其优化方法便可以得到我们上面设定的代价值和待求参数值。

print(get_end_tip_position(joint_vars))

[-2.09012905 2.07694604 3.01641479]

再查看我们求取的参数值计算得到的末端坐标,几乎就是我们的目标坐标值。成功啦!

下面开始最关键的使用部分啦!

GlobalBestPSO的使用

我举上面的官网例子其实也是因为我就是看那个例子学会的。下面就开始介绍GlobalBestPSO的使用方法吧!

参数(这里只讲常用的参数)

  1. n_particles :int,粒子群中的粒子数。一般取 20–40。如果是比较难的问题或者特定类别的问题,粒子数可以取到100 - 200。
  2. dimensions:int,待求取参数的维度。
  3. options:dict,参数c1,c2,w的设置。
    使用带有关键字{‘c1’, ‘c2’, ‘w’}的字典 。这里再重复一遍各关键字的含义:c1为粒子的个体认知系数,c2为群体系数系数,w为惯性因子。
    c1和c2取值通常相等,且常取值为2,当然取值0-4也有。
    w较大时全局搜索能力强,较小时局部搜索能力强。
  4. bounds:numpy.ndarray,待求参数的取值范围。
    两行的ndarray,第一行为待求参数的最小值,第二行为最大值。很重要的一点是,列的大小要和输入的参数维度匹配,并且还要注意每一个参数范围的对齐,不要错位了。
  5. init_pos:numpy.ndarray,初始位置的设置。
    不设置的话,粒子初始位置则是随机的。

方法

其实我认为最重要的是这个方法里待优化方程的写法QAQ。下面就开始了!PySwarms(Python粒子群优化工具包)的使用:GlobalBestPSO例子解析

optimize参数

  1. objective_func :callable,求取最优解的方程。

objective_func怎么写

说实话API文档并没有明确给出这个函数怎么写:)
这里我们以一个简单的二元二次为例,来看这个函数到底怎么写。
PySwarms(Python粒子群优化工具包)的使用:GlobalBestPSO例子解析
显然取全局最优也就是方程取最小值,此时x1=m,x2=n。

最最重要的一点就是待求参数要放在第一个,可以取名x,y等等等等,后面参数放多少都可以(当然夸张了)。其实就是类似于可变参数函数的参数规则。第一个参数是我们现在需要求的参数,所以自然不能传递值。其余参数就必须要有确定的值。

还有一点也是需要特别注意的是:放在第一个位置的参数在多维时,在使用第i个参数时,需要采用 x[: ,i] 这样的形式,否则会出错。

明确完这两点之后就可以开始写函数了:

import pyswarms as ps
swarm_size = 20
dim = 2        # Dimension of paramater vetcor X
options = {'c1': 0.5, 'c2': 0.3, 'w': 0.9}

optimizer = ps.single.GlobalBestPSO(n_particles=swarm_size,
                                    dimensions=dim,
                                    options=options)
def func(x,m=2,n=2):
    f = (x[:,0]-m)**2+(x[:,1]-n)**2
    return f
cost, pos = optimizer.optimize(func,iters=1000,m=3,n=1)

运行结果如下:
PySwarms(Python粒子群优化工具包)的使用:GlobalBestPSO例子解析

  1. iters:int,迭代次数。这个参数可以根据待解决问题的大小来选择。
  2. kwargs :dict,上述方程的输入参数。也可以在后面按参数名传递参数值。

optimize返回值

全局最小代价和全局最优位置。

总结

只要设定了合适的PSO优化算法参数,写好了待优化函数,理论上就能运用GlobalBestPSO求得全局最小代价和全局最优位置。

Python 相关文章推荐
web.py中调用文件夹内模板的方法
Aug 26 Python
Python函数式编程指南(四):生成器详解
Jun 24 Python
python中hashlib模块用法示例
Oct 30 Python
python实现决策树
Dec 21 Python
python实现多层感知器MLP(基于双月数据集)
Jan 18 Python
Python Django实现layui风格+django分页功能的例子
Aug 29 Python
Python实现多线程/多进程的TCP服务器
Sep 03 Python
Cython编译python为so 代码加密示例
Dec 23 Python
python如何实现DES加密
Sep 21 Python
python 使用OpenCV进行简单的人像分割与合成
Feb 02 Python
python OpenCV学习笔记
Mar 31 Python
使用Djongo模块在Django中使用MongoDB数据库
Jun 20 Python
python实现批量提取指定文件夹下同类型文件
Apr 05 #Python
python实现ROA算子边缘检测算法
python实现批量移动文件
Python list去重且保持原顺序不变的方法
Apr 03 #Python
python自动统计zabbix系统监控覆盖率的示例代码
Apr 03 #Python
2021年pycharm的最新安装教程及基本使用图文详解
PyCharm配置KBEngine快速处理代码提示冲突、配置命令问题
You might like
php后台程序与Javascript的两种交互方式
2009/10/25 PHP
表单提交错误后返回内容消失问题的解决方法(PHP网站)
2015/10/20 PHP
使用WAMP搭建PHP本地开发环境
2017/05/10 PHP
PHP 访问数据库配置通用方法(json)
2018/05/20 PHP
js三种排序算法分享
2012/08/16 Javascript
nodejs中exports与module.exports的区别详细介绍
2013/01/14 NodeJs
用JavaScript修改CSS属性的代码
2013/05/06 Javascript
JS比较2个日期间隔的示例代码
2014/04/15 Javascript
3种js实现string的substring方法
2015/11/09 Javascript
JS与Ajax Get和Post在使用上的区别实例详解
2016/06/08 Javascript
Node.js环境下编写爬虫爬取维基百科内容的实例分享
2016/06/12 Javascript
js实现自动轮换选项卡
2017/01/13 Javascript
jquery ui sortable拖拽后保存位置
2017/04/27 jQuery
javaScript实现鼠标在文字上悬浮时弹出悬浮层效果
2020/04/12 Javascript
javascript面向对象三大特征之继承实例详解
2019/07/24 Javascript
使用VueCli3+TypeScript+Vuex一步步构建todoList的方法
2019/07/25 Javascript
[02:22]《新闻直播间》2017年08月14日
2017/08/15 DOTA
python批量导出导入MySQL用户的方法
2013/11/15 Python
Python获取远程文件大小的函数代码分享
2014/05/13 Python
Python去除列表中重复元素的方法
2015/03/20 Python
Python正则表达式教程之一:基础篇
2017/03/02 Python
彻底理解Python中的yield关键字
2019/04/01 Python
django celery redis使用具体实践
2019/04/08 Python
selenium2.0中常用的python函数汇总
2019/08/05 Python
Flask 上传自定义头像的实例详解
2020/01/09 Python
python tkinter的消息框模块(messagebox,simpledialog)
2020/11/07 Python
使用Python画了一棵圣诞树的实例代码
2020/11/27 Python
详解HTML5新增标签
2017/11/27 HTML / CSS
营业员个人总结的自我评价
2013/10/25 职场文书
我的动漫时代的创业计划书范文
2014/01/27 职场文书
行政内勤岗位职责
2014/04/07 职场文书
松材线虫病防治方案
2014/06/15 职场文书
学生会生活部工作总结2015
2015/03/31 职场文书
董事长开业致辞
2015/07/29 职场文书
为什么中国式养孩子很累?
2019/08/07 职场文书
动作冒险《Hell Is Us》将采用虚幻5 消灭怪物探索王国
2022/04/13 其他游戏