Pytorch.nn.conv2d 过程验证方式(单,多通道卷积过程)


Posted in Python onJanuary 03, 2020

今天在看文档的时候,发现pytorch 的conv操作不是很明白,于是有了一下记录

首先提出两个问题:

1.输入图片是单通道情况下的filters是如何操作的? 即一通道卷积核卷积过程

2.输入图片是多通道情况下的filters是如何操作的? 即多通道多个卷积核卷积过程

这里首先贴出官方文档:

classtorch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)[source]

Pytorch.nn.conv2d 过程验证方式(单,多通道卷积过程)

Parameters:

in_channels (int) ? Number of channels in the input image
out_channels (int) ? Number of channels produced by the convolution
kernel_size (intortuple) ? Size of the convolving kernel
stride (intortuple,optional) ? Stride of the convolution. Default: 1
padding (intortuple,optional) ? Zero-padding added to both sides of the input. Default: 0
dilation (intortuple,optional) ? Spacing between kernel elements. Default: 1
groups (int,optional) ? Number of blocked connections from input channels to output channels. Default: 1
bias (bool,optional) ? If True, adds a learnable bias to the output. Default: True

这个文档中的公式对我来说,并不能看的清楚

Pytorch.nn.conv2d 过程验证方式(单,多通道卷积过程)

一通道卷积核卷积过程:

比如32个卷积核,可以学习32种特征。在有多个卷积核时,如下图所示:输出就为32个feature map

也就是, 当conv2d( in_channels = 1 , out_channels = N)

有N个filter对输入进行滤波。同时输出N个结果即feature map,每个filter滤波输出一个结果.

import torch
from torch.autograd import Variable
##单位矩阵来模拟输入
input=torch.ones(1,1,5,5)
input=Variable(input)
x=torch.nn.Conv2d(in_channels=1,out_channels=3,kernel_size=3,groups=1)
out=x(input)
print(out)
print(list(x.parameters()))

输出out的结果和conv2d 的参数如下,可以看到,conv2d是有3个filter加一个bias

# out的结果
Variable containing:
(0 ,0 ,.,.) = 
 -0.3065 -0.3065 -0.3065
 -0.3065 -0.3065 -0.3065
 -0.3065 -0.3065 -0.3065

(0 ,1 ,.,.) = 
 -0.3046 -0.3046 -0.3046
 -0.3046 -0.3046 -0.3046
 -0.3046 -0.3046 -0.3046

(0 ,2 ,.,.) = 
 0.0710 0.0710 0.0710
 0.0710 0.0710 0.0710
 0.0710 0.0710 0.0710
[torch.FloatTensor of size 1x3x3x3]

# conv2d的参数
[Parameter containing:
(0 ,0 ,.,.) = 
 -0.0789 -0.1932 -0.0990
 0.1571 -0.1784 -0.2334
 0.0311 -0.2595 0.2222

(1 ,0 ,.,.) = 
 -0.0703 -0.3159 -0.3295
 0.0723 0.3019 0.2649
 -0.2217 0.0680 -0.0699

(2 ,0 ,.,.) = 
 -0.0736 -0.1608 0.1905
 0.2738 0.2758 -0.2776
 -0.0246 -0.1781 -0.0279
[torch.FloatTensor of size 3x1x3x3]
, Parameter containing:
 0.3255
-0.0044
 0.0733
[torch.FloatTensor of size 3]
]

验证如下,因为是单位矩阵,所以直接对参数用sum()来模拟卷积过程:

f_p=list(x.parameters())[0]
f_p=f_p.data.numpy()
print("the result of first channel in image:", f_p[0].sum()+(0.3255))

可以看到结果是和(0 ,0 ,.,.) = -0.3065 ....一样的. 说明操作是通过卷积求和的.

the result of first channel in image: -0.306573044777

多通道卷积核卷积过程:

下图展示了在四个通道上的卷积操作,有两个卷积核,生成两个通道。其中需要注意的是,四个通道上每个通道对应一个卷积核,先将w2忽略,只看w1,那么在w1的某位置(i,j)处的值,是由四个通道上(i,j)处的卷积结果相加得到的。 所以最后得到两个feature map, 即输出层的卷积核核个数为 feature map 的个数。

Pytorch.nn.conv2d 过程验证方式(单,多通道卷积过程)

在pytorch 中的展示为

conv2d( in_channels = X(x>1) , out_channels = N)

有N乘X个filter(N组filters,每组X 个)对输入进行滤波。即每次有一组里X个filter对原X个channels分别进行滤波最后相加输出一个结果,最后输出N个结果即feature map。

验证如下:

##单位矩阵来模拟输入
input=torch.ones(1,3,5,5)
input=Variable(input)
x=torch.nn.Conv2d(in_channels=3,out_channels=4,kernel_size=3,groups=1)
out=x(input)
print(list(x.parameters()))

可以看到共有4*3=12个filter 和一个1×4的bias 作用在这个(3,5,5)的单位矩阵上

## out输出的结果
Variable containing:
(0 ,0 ,.,.) = 
 -0.6390 -0.6390 -0.6390
 -0.6390 -0.6390 -0.6390
 -0.6390 -0.6390 -0.6390

(0 ,1 ,.,.) = 
 -0.1467 -0.1467 -0.1467
 -0.1467 -0.1467 -0.1467
 -0.1467 -0.1467 -0.1467

(0 ,2 ,.,.) = 
 0.4138 0.4138 0.4138
 0.4138 0.4138 0.4138
 0.4138 0.4138 0.4138

(0 ,3 ,.,.) = 
 -0.3981 -0.3981 -0.3981
 -0.3981 -0.3981 -0.3981
 -0.3981 -0.3981 -0.3981
[torch.FloatTensor of size 1x4x3x3]

## x的参数设置
[Parameter containing:
(0 ,0 ,.,.) = 
 -0.0803 0.1473 -0.0762
 0.0284 -0.0050 -0.0246
 0.1438 0.0955 -0.0500

(0 ,1 ,.,.) = 
 0.0716 0.0062 -0.1472
 0.1793 0.0543 -0.1764
 -0.1548 0.1379 0.1143

(0 ,2 ,.,.) = 
 -0.1741 -0.1790 -0.0053
 -0.0612 -0.1856 -0.0858
 -0.0553 0.1621 -0.1822

(1 ,0 ,.,.) = 
 -0.0773 -0.1385 0.1356
 0.1794 -0.0534 -0.1110
 -0.0137 -0.1744 -0.0188

(1 ,1 ,.,.) = 
 -0.0396 0.0149 0.1537
 0.0846 -0.1123 -0.0556
 -0.1047 -0.1783 -0.0630

(1 ,2 ,.,.) = 
 0.1850 0.0325 0.0332
 -0.0487 0.0018 0.1668
 0.0569 0.0267 0.0124

(2 ,0 ,.,.) = 
 0.1880 -0.0152 -0.1088
 -0.0105 0.1805 -0.0343
 -0.1676 0.1249 0.1872

(2 ,1 ,.,.) = 
 0.0299 0.0449 0.1179
 0.1280 -0.1545 0.0593
 -0.1489 0.1378 -0.1495

(2 ,2 ,.,.) = 
 -0.0922 0.1873 -0.1163
 0.0970 -0.0682 -0.1110
 0.0614 -0.1877 0.1918

(3 ,0 ,.,.) = 
 -0.1257 -0.0814 -0.1923
 0.0048 -0.0789 -0.0048
 0.0780 -0.0290 0.1287

(3 ,1 ,.,.) = 
 -0.0649 0.0773 -0.0584
 0.0092 -0.1168 -0.0923
 0.0614 0.1159 0.0134

(3 ,2 ,.,.) = 
 0.0426 -0.1055 0.1022
 -0.0810 0.0540 -0.1011
 0.0698 -0.0799 -0.0786
[torch.FloatTensor of size 4x3x3x3]
, Parameter containing:
-0.1367
-0.0410
 0.0424
 0.1353
[torch.FloatTensor of size 4]
]

因为是单位矩阵,所以直接对参数用sum()来模拟卷积过程,结果-0.639065589142 与之前的out结果的(0 ,0 ,.,.) = -0.6390 相同, 即conv2d 是通过利用4组filters,每组filter对每个通道分别卷积相加得到结果。

f_p=list(x.parameters())[0]
f_p=f_p.data.numpy()
print(f_p[0].sum()+(-0.1367))

-0.639065589142

再更新

import torch
from torch.autograd import Variable
input=torch.ones(1,1,5,5)
input=Variable(input)
x=torch.nn.Conv2d(in_channels=1,out_channels=3,kernel_size=3,groups=1)
out=x(input)

f_p=list(x.parameters())[0]
f_p=f_p.data.numpy()
f_b=list(x.parameters())[1]
f_b=f_b.data.numpy()

print("output result is:", out[0][0])
print("the result of first channel in image:", f_p[0].sum()+f_b[0])

output result is: Variable containing:
0.6577 0.6577 0.6577
0.6577 0.6577 0.6577
0.6577 0.6577 0.6577
[torch.FloatTensor of size 3x3]

the result of first channel in image: 0.657724

input=torch.ones(1,3,5,5)
input=Variable(input)
print(input.size())
x=torch.nn.Conv2d(in_channels=3,out_channels=4,kernel_size=3,groups=1)
out=x(input)

f_p=list(x.parameters())[0]
f_b=list(x.parameters())[1]
f_p=f_p.data.numpy()
f_b=f_b.data.numpy()
# print(f_p[...,0])
# print(f_p[...,0].shape)
# print(f_p[...,0].sum()+f_b[0])
print("output result :",out[0][0])
print("simlatuate the result:", f_p[0].sum()+f_b[0])

torch.Size([1, 3, 5, 5])
output result : Variable containing:
-0.2087 -0.2087 -0.2087
-0.2087 -0.2087 -0.2087
-0.2087 -0.2087 -0.2087
[torch.FloatTensor of size 3x3]

simlatuate the result: -0.208715

以上这篇Pytorch.nn.conv2d 过程验证方式(单,多通道卷积过程)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python 转换 Javascript %u 字符串为python unicode的代码
Sep 06 Python
Pandas 对Dataframe结构排序的实现方法
Apr 10 Python
pandas全表查询定位某个值所在行列的方法
Apr 12 Python
利用Python正则表达式过滤敏感词的方法
Jan 21 Python
IronPython连接MySQL的方法步骤
Dec 27 Python
Python3标准库之functools管理函数的工具详解
Feb 27 Python
Python3 socket即时通讯脚本实现代码实例(threading多线程)
Jun 01 Python
基于Tensorflow的MNIST手写数字识别分类
Jun 17 Python
简单了解Django项目应用创建过程
Jul 06 Python
Python 如何实现访问者模式
Jul 28 Python
BeautifulSoup获取指定class样式的div的实现
Dec 07 Python
Python中的 No Module named ***问题及解决
Jul 23 Python
如何基于python实现画不同品种的樱花树
Jan 03 #Python
Python基础之变量基本用法与进阶详解
Jan 03 #Python
PyTorch里面的torch.nn.Parameter()详解
Jan 03 #Python
Python实现银行账户资金交易管理系统
Jan 03 #Python
Pytorch提取模型特征向量保存至csv的例子
Jan 03 #Python
pytorch查看torch.Tensor和model是否在CUDA上的实例
Jan 03 #Python
python实现上传文件到linux指定目录的方法
Jan 03 #Python
You might like
PHP捕获Fatal error错误的方法
2014/06/11 PHP
Yii调试SQL的常用方法
2014/07/09 PHP
PHP多进程编程总结(推荐)
2016/07/18 PHP
php in_array() 检查数组中是否存在某个值详解
2016/11/23 PHP
利用phpexcel对数据库数据的导入excel(excel筛选)、导出excel
2017/04/27 PHP
php设计模式之策略模式实例分析【星际争霸游戏案例】
2020/03/26 PHP
javascript作用域和闭包使用详解
2014/04/25 Javascript
jquery统计用户选中的复选框的个数
2014/06/06 Javascript
关闭页面window.location事件未执行的原因及解决方法
2014/09/01 Javascript
深入分析JSONP跨域的原理
2014/12/10 Javascript
Javascript 正则表达式实现为数字添加千位分隔符
2015/03/10 Javascript
jQuery实现table中的tr上下移动并保持序号不变的实例代码
2016/07/11 Javascript
10 种最常见的 Javascript 错误(频率最高)
2018/02/08 Javascript
详解Vue3.0 前的 TypeScript 最佳入门实践
2019/06/18 Javascript
使用Node.js在深度学习中做图片预处理的方法
2019/09/18 Javascript
基于axios 的responseType类型的设置方法
2019/10/29 Javascript
JS函数基本定义与用法示例
2020/01/15 Javascript
vue.js使用v-model实现父子组件间的双向通信示例
2020/02/05 Javascript
在Echarts图中给坐标轴加一个标识线markLine
2020/07/20 Javascript
Django进阶之CSRF的解决
2018/08/01 Python
Django文件存储 自己定制存储系统解析
2019/08/02 Python
python进程的状态、创建及使用方法详解
2019/12/06 Python
python字典setdefault方法和get方法使用实例
2019/12/25 Python
Pytorch to(device)用法
2020/01/08 Python
Python如何实现的二分查找算法
2020/05/27 Python
资生堂美国官网:Shiseido美国
2016/09/02 全球购物
EJB3推出JPA的原因
2013/10/16 面试题
财务会计自荐信范文
2014/02/21 职场文书
出纳员岗位职责风险
2014/03/06 职场文书
软件专业毕业生个人自我鉴定
2014/04/17 职场文书
防火标语大全
2014/10/06 职场文书
2019暑期安全倡议书!
2019/06/27 职场文书
农村房屋租赁合同(范本)
2019/07/23 职场文书
优秀范文:读《红岩》有感3篇
2019/10/14 职场文书
FFmpeg视频处理入门教程(新手必看)
2022/01/22 杂记
Python如何快速找到多个字典中的公共键(key)
2022/04/29 Python