Pytorch.nn.conv2d 过程验证方式(单,多通道卷积过程)


Posted in Python onJanuary 03, 2020

今天在看文档的时候,发现pytorch 的conv操作不是很明白,于是有了一下记录

首先提出两个问题:

1.输入图片是单通道情况下的filters是如何操作的? 即一通道卷积核卷积过程

2.输入图片是多通道情况下的filters是如何操作的? 即多通道多个卷积核卷积过程

这里首先贴出官方文档:

classtorch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)[source]

Pytorch.nn.conv2d 过程验证方式(单,多通道卷积过程)

Parameters:

in_channels (int) ? Number of channels in the input image
out_channels (int) ? Number of channels produced by the convolution
kernel_size (intortuple) ? Size of the convolving kernel
stride (intortuple,optional) ? Stride of the convolution. Default: 1
padding (intortuple,optional) ? Zero-padding added to both sides of the input. Default: 0
dilation (intortuple,optional) ? Spacing between kernel elements. Default: 1
groups (int,optional) ? Number of blocked connections from input channels to output channels. Default: 1
bias (bool,optional) ? If True, adds a learnable bias to the output. Default: True

这个文档中的公式对我来说,并不能看的清楚

Pytorch.nn.conv2d 过程验证方式(单,多通道卷积过程)

一通道卷积核卷积过程:

比如32个卷积核,可以学习32种特征。在有多个卷积核时,如下图所示:输出就为32个feature map

也就是, 当conv2d( in_channels = 1 , out_channels = N)

有N个filter对输入进行滤波。同时输出N个结果即feature map,每个filter滤波输出一个结果.

import torch
from torch.autograd import Variable
##单位矩阵来模拟输入
input=torch.ones(1,1,5,5)
input=Variable(input)
x=torch.nn.Conv2d(in_channels=1,out_channels=3,kernel_size=3,groups=1)
out=x(input)
print(out)
print(list(x.parameters()))

输出out的结果和conv2d 的参数如下,可以看到,conv2d是有3个filter加一个bias

# out的结果
Variable containing:
(0 ,0 ,.,.) = 
 -0.3065 -0.3065 -0.3065
 -0.3065 -0.3065 -0.3065
 -0.3065 -0.3065 -0.3065

(0 ,1 ,.,.) = 
 -0.3046 -0.3046 -0.3046
 -0.3046 -0.3046 -0.3046
 -0.3046 -0.3046 -0.3046

(0 ,2 ,.,.) = 
 0.0710 0.0710 0.0710
 0.0710 0.0710 0.0710
 0.0710 0.0710 0.0710
[torch.FloatTensor of size 1x3x3x3]

# conv2d的参数
[Parameter containing:
(0 ,0 ,.,.) = 
 -0.0789 -0.1932 -0.0990
 0.1571 -0.1784 -0.2334
 0.0311 -0.2595 0.2222

(1 ,0 ,.,.) = 
 -0.0703 -0.3159 -0.3295
 0.0723 0.3019 0.2649
 -0.2217 0.0680 -0.0699

(2 ,0 ,.,.) = 
 -0.0736 -0.1608 0.1905
 0.2738 0.2758 -0.2776
 -0.0246 -0.1781 -0.0279
[torch.FloatTensor of size 3x1x3x3]
, Parameter containing:
 0.3255
-0.0044
 0.0733
[torch.FloatTensor of size 3]
]

验证如下,因为是单位矩阵,所以直接对参数用sum()来模拟卷积过程:

f_p=list(x.parameters())[0]
f_p=f_p.data.numpy()
print("the result of first channel in image:", f_p[0].sum()+(0.3255))

可以看到结果是和(0 ,0 ,.,.) = -0.3065 ....一样的. 说明操作是通过卷积求和的.

the result of first channel in image: -0.306573044777

多通道卷积核卷积过程:

下图展示了在四个通道上的卷积操作,有两个卷积核,生成两个通道。其中需要注意的是,四个通道上每个通道对应一个卷积核,先将w2忽略,只看w1,那么在w1的某位置(i,j)处的值,是由四个通道上(i,j)处的卷积结果相加得到的。 所以最后得到两个feature map, 即输出层的卷积核核个数为 feature map 的个数。

Pytorch.nn.conv2d 过程验证方式(单,多通道卷积过程)

在pytorch 中的展示为

conv2d( in_channels = X(x>1) , out_channels = N)

有N乘X个filter(N组filters,每组X 个)对输入进行滤波。即每次有一组里X个filter对原X个channels分别进行滤波最后相加输出一个结果,最后输出N个结果即feature map。

验证如下:

##单位矩阵来模拟输入
input=torch.ones(1,3,5,5)
input=Variable(input)
x=torch.nn.Conv2d(in_channels=3,out_channels=4,kernel_size=3,groups=1)
out=x(input)
print(list(x.parameters()))

可以看到共有4*3=12个filter 和一个1×4的bias 作用在这个(3,5,5)的单位矩阵上

## out输出的结果
Variable containing:
(0 ,0 ,.,.) = 
 -0.6390 -0.6390 -0.6390
 -0.6390 -0.6390 -0.6390
 -0.6390 -0.6390 -0.6390

(0 ,1 ,.,.) = 
 -0.1467 -0.1467 -0.1467
 -0.1467 -0.1467 -0.1467
 -0.1467 -0.1467 -0.1467

(0 ,2 ,.,.) = 
 0.4138 0.4138 0.4138
 0.4138 0.4138 0.4138
 0.4138 0.4138 0.4138

(0 ,3 ,.,.) = 
 -0.3981 -0.3981 -0.3981
 -0.3981 -0.3981 -0.3981
 -0.3981 -0.3981 -0.3981
[torch.FloatTensor of size 1x4x3x3]

## x的参数设置
[Parameter containing:
(0 ,0 ,.,.) = 
 -0.0803 0.1473 -0.0762
 0.0284 -0.0050 -0.0246
 0.1438 0.0955 -0.0500

(0 ,1 ,.,.) = 
 0.0716 0.0062 -0.1472
 0.1793 0.0543 -0.1764
 -0.1548 0.1379 0.1143

(0 ,2 ,.,.) = 
 -0.1741 -0.1790 -0.0053
 -0.0612 -0.1856 -0.0858
 -0.0553 0.1621 -0.1822

(1 ,0 ,.,.) = 
 -0.0773 -0.1385 0.1356
 0.1794 -0.0534 -0.1110
 -0.0137 -0.1744 -0.0188

(1 ,1 ,.,.) = 
 -0.0396 0.0149 0.1537
 0.0846 -0.1123 -0.0556
 -0.1047 -0.1783 -0.0630

(1 ,2 ,.,.) = 
 0.1850 0.0325 0.0332
 -0.0487 0.0018 0.1668
 0.0569 0.0267 0.0124

(2 ,0 ,.,.) = 
 0.1880 -0.0152 -0.1088
 -0.0105 0.1805 -0.0343
 -0.1676 0.1249 0.1872

(2 ,1 ,.,.) = 
 0.0299 0.0449 0.1179
 0.1280 -0.1545 0.0593
 -0.1489 0.1378 -0.1495

(2 ,2 ,.,.) = 
 -0.0922 0.1873 -0.1163
 0.0970 -0.0682 -0.1110
 0.0614 -0.1877 0.1918

(3 ,0 ,.,.) = 
 -0.1257 -0.0814 -0.1923
 0.0048 -0.0789 -0.0048
 0.0780 -0.0290 0.1287

(3 ,1 ,.,.) = 
 -0.0649 0.0773 -0.0584
 0.0092 -0.1168 -0.0923
 0.0614 0.1159 0.0134

(3 ,2 ,.,.) = 
 0.0426 -0.1055 0.1022
 -0.0810 0.0540 -0.1011
 0.0698 -0.0799 -0.0786
[torch.FloatTensor of size 4x3x3x3]
, Parameter containing:
-0.1367
-0.0410
 0.0424
 0.1353
[torch.FloatTensor of size 4]
]

因为是单位矩阵,所以直接对参数用sum()来模拟卷积过程,结果-0.639065589142 与之前的out结果的(0 ,0 ,.,.) = -0.6390 相同, 即conv2d 是通过利用4组filters,每组filter对每个通道分别卷积相加得到结果。

f_p=list(x.parameters())[0]
f_p=f_p.data.numpy()
print(f_p[0].sum()+(-0.1367))

-0.639065589142

再更新

import torch
from torch.autograd import Variable
input=torch.ones(1,1,5,5)
input=Variable(input)
x=torch.nn.Conv2d(in_channels=1,out_channels=3,kernel_size=3,groups=1)
out=x(input)

f_p=list(x.parameters())[0]
f_p=f_p.data.numpy()
f_b=list(x.parameters())[1]
f_b=f_b.data.numpy()

print("output result is:", out[0][0])
print("the result of first channel in image:", f_p[0].sum()+f_b[0])

output result is: Variable containing:
0.6577 0.6577 0.6577
0.6577 0.6577 0.6577
0.6577 0.6577 0.6577
[torch.FloatTensor of size 3x3]

the result of first channel in image: 0.657724

input=torch.ones(1,3,5,5)
input=Variable(input)
print(input.size())
x=torch.nn.Conv2d(in_channels=3,out_channels=4,kernel_size=3,groups=1)
out=x(input)

f_p=list(x.parameters())[0]
f_b=list(x.parameters())[1]
f_p=f_p.data.numpy()
f_b=f_b.data.numpy()
# print(f_p[...,0])
# print(f_p[...,0].shape)
# print(f_p[...,0].sum()+f_b[0])
print("output result :",out[0][0])
print("simlatuate the result:", f_p[0].sum()+f_b[0])

torch.Size([1, 3, 5, 5])
output result : Variable containing:
-0.2087 -0.2087 -0.2087
-0.2087 -0.2087 -0.2087
-0.2087 -0.2087 -0.2087
[torch.FloatTensor of size 3x3]

simlatuate the result: -0.208715

以上这篇Pytorch.nn.conv2d 过程验证方式(单,多通道卷积过程)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python处理PHP数组文本文件实例
Sep 18 Python
Python中实现对list做减法操作介绍
Jan 09 Python
Python提取支付宝和微信支付二维码的示例代码
Feb 15 Python
python web框架Flask实现图形验证码及验证码的动态刷新实例
Oct 14 Python
基于python实现从尾到头打印链表
Nov 02 Python
python框架django项目部署相关知识详解
Nov 04 Python
Python单元测试与测试用例简析
Nov 09 Python
python爬取本站电子书信息并入库的实现代码
Jan 20 Python
基于FME使用Python过程图解
May 13 Python
Python Celery异步任务队列使用方法解析
Aug 10 Python
通过实例解析Python文件操作实现步骤
Sep 21 Python
Python采集壁纸并实现炫轮播
Apr 30 Python
如何基于python实现画不同品种的樱花树
Jan 03 #Python
Python基础之变量基本用法与进阶详解
Jan 03 #Python
PyTorch里面的torch.nn.Parameter()详解
Jan 03 #Python
Python实现银行账户资金交易管理系统
Jan 03 #Python
Pytorch提取模型特征向量保存至csv的例子
Jan 03 #Python
pytorch查看torch.Tensor和model是否在CUDA上的实例
Jan 03 #Python
python实现上传文件到linux指定目录的方法
Jan 03 #Python
You might like
基于php伪静态的实现详细介绍
2013/04/28 PHP
浅谈PHP安全防护之Web攻击
2017/01/03 PHP
php实现数组中出现次数超过一半的数字的统计方法
2018/10/14 PHP
Javascript学习笔记4 Eval函数
2010/01/11 Javascript
jquery随意添加移除html的实现代码
2011/06/21 Javascript
基于jQuery的获取标签名的代码
2012/07/16 Javascript
js 手机号码合法性验证代码集合
2012/09/29 Javascript
JavaScript将数据转换成整数的方法
2014/01/04 Javascript
js获取checkbox复选框选中的选项实例
2014/08/24 Javascript
详解webpack2+node+react+babel实现热加载(hmr)
2017/08/24 Javascript
浅谈AngularJS中$http服务的简单用法
2018/05/15 Javascript
浅谈Webpack核心模块tapable解析
2018/09/11 Javascript
详解Vue前端对axios的封装和使用
2019/04/01 Javascript
Node.JS枚举统计当前文件夹和子目录下所有代码文件行数
2019/08/23 Javascript
vue实现Input输入框模糊查询方法
2021/01/29 Javascript
javascript浅层克隆、深度克隆对比及实例解析
2020/02/09 Javascript
Vue+penlayers实现多边形绘制及展示
2020/12/24 Vue.js
vue3.0 自适应不同分辨率电脑的操作
2021/02/06 Vue.js
python根据文件大小打log日志
2014/10/09 Python
介绍Python中的__future__模块
2015/04/27 Python
使用k8s部署Django项目的方法步骤
2019/01/14 Python
Python3.4解释器用法简单示例
2019/03/22 Python
解决Mac下使用python的坑
2019/08/13 Python
python 将视频 通过视频帧转换成时间实例
2020/04/23 Python
python+requests接口自动化框架的实现
2020/08/31 Python
详解Pymongo常用查询方法总结
2021/01/29 Python
基于css3 animate制作绚丽的动画效果
2015/11/24 HTML / CSS
Emporio Armani腕表天猫官方旗舰店:乔治·阿玛尼为年轻人设计的副线品牌
2017/07/02 全球购物
白俄罗斯大卖场:21vek.by
2019/07/25 全球购物
请说出几个常用的异常类
2013/01/08 面试题
init进程的作用
2015/08/20 面试题
网站开发实习生的自我评价
2013/12/11 职场文书
高中教师先进事迹材料
2014/08/22 职场文书
2014年电厂个人工作总结
2014/11/27 职场文书
PHP获取学生成绩的方法
2021/11/17 PHP
Python函数中apply、map、applymap的区别
2021/11/27 Python