Python+OpenCV实现实时眼动追踪的示例代码


Posted in Python onNovember 11, 2019

使用Python+OpenCV实现实时眼动追踪,不需要高端硬件简单摄像头即可实现,效果图如下所示。

Python+OpenCV实现实时眼动追踪的示例代码 

项目演示参见:https://www.bilibili.com/video/av75181965/

项目主程序如下:

import sys
import cv2
import numpy as np
import process
from PyQt5.QtCore import QTimer
from PyQt5.QtWidgets import QApplication, QMainWindow
from PyQt5.uic import loadUi
from PyQt5.QtGui import QPixmap, QImage
 
 
class Window(QMainWindow):
  def __init__(self):
    super(Window, self).__init__()
    loadUi('GUImain.ui', self)
    with open("style.css", "r") as css:
      self.setStyleSheet(css.read())
    self.face_decector, self.eye_detector, self.detector = process.init_cv()
    self.startButton.clicked.connect(self.start_webcam)
    self.stopButton.clicked.connect(self.stop_webcam)
    self.camera_is_running = False
    self.previous_right_keypoints = None
    self.previous_left_keypoints = None
    self.previous_right_blob_area = None
    self.previous_left_blob_area = None
 
  def start_webcam(self):
    if not self.camera_is_running:
      self.capture = cv2.VideoCapture(cv2.CAP_DSHOW) # VideoCapture(0) sometimes drops error #-1072875772
      if self.capture is None:
        self.capture = cv2.VideoCapture(0)
      self.camera_is_running = True
      self.timer = QTimer(self)
      self.timer.timeout.connect(self.update_frame)
      self.timer.start(2)
 
  def stop_webcam(self):
    if self.camera_is_running:
      self.capture.release()
      self.timer.stop()
      self.camera_is_running = not self.camera_is_running
 
  def update_frame(self): # logic of the main loop
 
    _, base_image = self.capture.read()
    self.display_image(base_image)
 
    processed_image = cv2.cvtColor(base_image, cv2.COLOR_RGB2GRAY)
 
    face_frame, face_frame_gray, left_eye_estimated_position, right_eye_estimated_position, _, _ = process.detect_face(
      base_image, processed_image, self.face_decector)
 
    if face_frame is not None:
      left_eye_frame, right_eye_frame, left_eye_frame_gray, right_eye_frame_gray = process.detect_eyes(face_frame,
                                                       face_frame_gray,
                                                       left_eye_estimated_position,
                                                       right_eye_estimated_position,
                                                       self.eye_detector)
 
      if right_eye_frame is not None:
        if self.rightEyeCheckbox.isChecked():
          right_eye_threshold = self.rightEyeThreshold.value()
          right_keypoints, self.previous_right_keypoints, self.previous_right_blob_area = self.get_keypoints(
            right_eye_frame, right_eye_frame_gray, right_eye_threshold,
            previous_area=self.previous_right_blob_area,
            previous_keypoint=self.previous_right_keypoints)
          process.draw_blobs(right_eye_frame, right_keypoints)
 
        right_eye_frame = np.require(right_eye_frame, np.uint8, 'C')
        self.display_image(right_eye_frame, window='right')
 
      if left_eye_frame is not None:
        if self.leftEyeCheckbox.isChecked():
          left_eye_threshold = self.leftEyeThreshold.value()
          left_keypoints, self.previous_left_keypoints, self.previous_left_blob_area = self.get_keypoints(
            left_eye_frame, left_eye_frame_gray, left_eye_threshold,
            previous_area=self.previous_left_blob_area,
            previous_keypoint=self.previous_left_keypoints)
          process.draw_blobs(left_eye_frame, left_keypoints)
 
        left_eye_frame = np.require(left_eye_frame, np.uint8, 'C')
        self.display_image(left_eye_frame, window='left')
 
    if self.pupilsCheckbox.isChecked(): # draws keypoints on pupils on main window
      self.display_image(base_image)
 
  def get_keypoints(self, frame, frame_gray, threshold, previous_keypoint, previous_area):
 
    keypoints = process.process_eye(frame_gray, threshold, self.detector,
                    prevArea=previous_area)
    if keypoints:
      previous_keypoint = keypoints
      previous_area = keypoints[0].size
    else:
      keypoints = previous_keypoint
    return keypoints, previous_keypoint, previous_area
 
  def display_image(self, img, window='main'):
    # Makes OpenCV images displayable on PyQT, displays them
    qformat = QImage.Format_Indexed8
    if len(img.shape) == 3:
      if img.shape[2] == 4: # RGBA
        qformat = QImage.Format_RGBA8888
      else: # RGB
        qformat = QImage.Format_RGB888
 
    out_image = QImage(img, img.shape[1], img.shape[0], img.strides[0], qformat) # BGR to RGB
    out_image = out_image.rgbSwapped()
    if window == 'main': # main window
      self.baseImage.setPixmap(QPixmap.fromImage(out_image))
      self.baseImage.setScaledContents(True)
    if window == 'left': # left eye window
      self.leftEyeBox.setPixmap(QPixmap.fromImage(out_image))
      self.leftEyeBox.setScaledContents(True)
    if window == 'right': # right eye window
      self.rightEyeBox.setPixmap(QPixmap.fromImage(out_image))
      self.rightEyeBox.setScaledContents(True)
 
 
if __name__ == "__main__":
  app = QApplication(sys.argv)
  window = Window()
  window.setWindowTitle("GUI")
  window.show()
  sys.exit(app.exec_())

人眼检测程序如下:

import os
import cv2
import numpy as np
 
 
def init_cv():
  """loads all of cv2 tools"""
  face_detector = cv2.CascadeClassifier(
    os.path.join("Classifiers", "haar", "haarcascade_frontalface_default.xml"))
  eye_detector = cv2.CascadeClassifier(os.path.join("Classifiers", "haar", 'haarcascade_eye.xml'))
  detector_params = cv2.SimpleBlobDetector_Params()
  detector_params.filterByArea = True
  detector_params.maxArea = 1500
  detector = cv2.SimpleBlobDetector_create(detector_params)
 
  return face_detector, eye_detector, detector
 
 
def detect_face(img, img_gray, cascade):
  """
  Detects all faces, if multiple found, works with the biggest. Returns the following parameters:
  1. The face frame
  2. A gray version of the face frame
  2. Estimated left eye coordinates range
  3. Estimated right eye coordinates range
  5. X of the face frame
  6. Y of the face frame
  """
  coords = cascade.detectMultiScale(img, 1.3, 5)
 
  if len(coords) > 1:
    biggest = (0, 0, 0, 0)
    for i in coords:
      if i[3] > biggest[3]:
        biggest = i
    biggest = np.array([i], np.int32)
  elif len(coords) == 1:
    biggest = coords
  else:
    return None, None, None, None, None, None
  for (x, y, w, h) in biggest:
    frame = img[y:y + h, x:x + w]
    frame_gray = img_gray[y:y + h, x:x + w]
    lest = (int(w * 0.1), int(w * 0.45))
    rest = (int(w * 0.55), int(w * 0.9))
    X = x
    Y = y
 
  return frame, frame_gray, lest, rest, X, Y
 
 
def detect_eyes(img, img_gray, lest, rest, cascade):
  """
  :param img: image frame
  :param img_gray: gray image frame
  :param lest: left eye estimated position, needed to filter out nostril, know what eye is found
  :param rest: right eye estimated position
  :param cascade: Hhaar cascade
  :return: colored and grayscale versions of eye frames
  """
  leftEye = None
  rightEye = None
  leftEyeG = None
  rightEyeG = None
  coords = cascade.detectMultiScale(img_gray, 1.3, 5)
 
  if coords is None or len(coords) == 0:
    pass
  else:
    for (x, y, w, h) in coords:
      eyecenter = int(float(x) + (float(w) / float(2)))
      if lest[0] < eyecenter and eyecenter < lest[1]:
        leftEye = img[y:y + h, x:x + w]
        leftEyeG = img_gray[y:y + h, x:x + w]
        leftEye, leftEyeG = cut_eyebrows(leftEye, leftEyeG)
      elif rest[0] < eyecenter and eyecenter < rest[1]:
        rightEye = img[y:y + h, x:x + w]
        rightEyeG = img_gray[y:y + h, x:x + w]
        rightEye, rightEye = cut_eyebrows(rightEye, rightEyeG)
      else:
        pass # nostril
  return leftEye, rightEye, leftEyeG, rightEyeG
 
 
def process_eye(img, threshold, detector, prevArea=None):
  """
  :param img: eye frame
  :param threshold: threshold value for threshold function
  :param detector: blob detector
  :param prevArea: area of the previous keypoint(used for filtering)
  :return: keypoints
  """
  _, img = cv2.threshold(img, threshold, 255, cv2.THRESH_BINARY)
  img = cv2.erode(img, None, iterations=2)
  img = cv2.dilate(img, None, iterations=4)
  img = cv2.medianBlur(img, 5)
  keypoints = detector.detect(img)
  if keypoints and prevArea and len(keypoints) > 1:
    tmp = 1000
    for keypoint in keypoints: # filter out odd blobs
      if abs(keypoint.size - prevArea) < tmp:
        ans = keypoint
        tmp = abs(keypoint.size - prevArea)
    keypoints = np.array(ans)
 
  return keypoints
 
def cut_eyebrows(img, imgG):
  height, width = img.shape[:2]
  img = img[15:height, 0:width] # cut eyebrows out (15 px)
  imgG = imgG[15:height, 0:width]
 
  return img, imgG
 
 
def draw_blobs(img, keypoints):
  """Draws blobs"""
  cv2.drawKeypoints(img, keypoints, img, (0, 0, 255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python中遍历文件的3个方法
Sep 02 Python
Python单链表的简单实现方法
Sep 23 Python
详解python基础之while循环及if判断
Aug 24 Python
Python数据分析之如何利用pandas查询数据示例代码
Sep 01 Python
Python中最大最小赋值小技巧(分享)
Dec 23 Python
Python实现生成随机日期字符串的方法示例
Dec 25 Python
基于anaconda下强大的conda命令介绍
Jun 11 Python
如何在Django中设置定时任务的方法示例
Jan 18 Python
Python类中self参数用法详解
Feb 13 Python
Django基于客户端下载文件实现方法
Apr 21 Python
python 星号(*)的多种用途
Sep 21 Python
基于Python爬取素材网站音频文件
Oct 21 Python
python的pyecharts绘制各种图表详细(附代码)
Nov 11 #Python
python OpenCV GrabCut使用实例解析
Nov 11 #Python
Python上下文管理器用法及实例解析
Nov 11 #Python
Django 请求Request的具体使用方法
Nov 11 #Python
浅谈Python类中的self到底是干啥的
Nov 11 #Python
python 调试冷知识(小结)
Nov 11 #Python
通过 Django Pagination 实现简单分页功能
Nov 11 #Python
You might like
令PHP初学者头疼十四条问题大总结
2008/11/12 PHP
使用phpexcel类实现excel导入mysql数据库功能(实例代码)
2016/05/12 PHP
laravel 解决Eloquent ORM的save方法无法插入数据的问题
2019/10/21 PHP
JS判断不能为空实例代码
2013/11/26 Javascript
打造个性化的功能强大的Jquery虚拟键盘(VirtualKeyboard)
2014/10/11 Javascript
vue-router 学习快速入门
2017/03/01 Javascript
浅谈vue.js中v-for循环渲染
2017/07/26 Javascript
详解React native全局变量的使用(跨组件的通信)
2017/09/07 Javascript
用JS编写一个函数,返回数组中重复出现过的元素(实例)
2017/09/14 Javascript
weebox弹出窗口不居中显示的解决方法
2017/11/27 Javascript
vue中使用iview自定义验证关键词输入框问题及解决方法
2018/03/26 Javascript
JavaScript高级函数应用之分时函数实例分析
2018/08/03 Javascript
详解如何webpack使用DllPlugin
2018/09/30 Javascript
Vue 重置组件到初始状态的方法示例
2018/10/10 Javascript
vue App.vue中的公共组件改变值触发其他组件或.vue页面监听
2019/05/31 Javascript
跟老齐学Python之折腾一下目录
2014/10/24 Python
Django中反向生成models.py的实例讲解
2018/05/30 Python
Python写捕鱼达人的游戏实现
2020/03/31 Python
python 装饰器的使用示例
2020/10/10 Python
使用html2canvas.js实现页面截图并显示或上传的示例代码
2018/12/18 HTML / CSS
瑞典的玛丽小姐:Miss Mary of Sweden
2019/02/13 全球购物
英国设计师珠宝网站:Joshua James Jewellery
2020/03/01 全球购物
赡养老人协议书
2014/04/21 职场文书
体育口号大全
2014/06/18 职场文书
中专生自荐信
2014/06/25 职场文书
教师节学生演讲稿
2014/09/03 职场文书
红领巾心向党演讲稿
2014/09/10 职场文书
2014年幼儿园工作总结
2014/11/10 职场文书
新郎父母婚礼致辞
2015/07/27 职场文书
安全生产培训心得体会
2016/01/18 职场文书
导游词之苏州阳澄湖
2019/11/15 职场文书
简单介绍 http请求响应参数、无连接无状态、MIME、状态码、端口、telnet、curl
2021/03/31 HTML / CSS
HTML5简单实现添加背景音乐的几种方法
2021/05/12 HTML / CSS
能用CSS实现的就不要麻烦JavaScript了
2021/10/05 HTML / CSS
如何通过一篇文章了解Python中的生成器
2022/04/02 Python
PostgreSQL常用字符串分割函数整理汇总
2022/07/07 PostgreSQL