Python+OpenCV实现实时眼动追踪的示例代码


Posted in Python onNovember 11, 2019

使用Python+OpenCV实现实时眼动追踪,不需要高端硬件简单摄像头即可实现,效果图如下所示。

Python+OpenCV实现实时眼动追踪的示例代码 

项目演示参见:https://www.bilibili.com/video/av75181965/

项目主程序如下:

import sys
import cv2
import numpy as np
import process
from PyQt5.QtCore import QTimer
from PyQt5.QtWidgets import QApplication, QMainWindow
from PyQt5.uic import loadUi
from PyQt5.QtGui import QPixmap, QImage
 
 
class Window(QMainWindow):
  def __init__(self):
    super(Window, self).__init__()
    loadUi('GUImain.ui', self)
    with open("style.css", "r") as css:
      self.setStyleSheet(css.read())
    self.face_decector, self.eye_detector, self.detector = process.init_cv()
    self.startButton.clicked.connect(self.start_webcam)
    self.stopButton.clicked.connect(self.stop_webcam)
    self.camera_is_running = False
    self.previous_right_keypoints = None
    self.previous_left_keypoints = None
    self.previous_right_blob_area = None
    self.previous_left_blob_area = None
 
  def start_webcam(self):
    if not self.camera_is_running:
      self.capture = cv2.VideoCapture(cv2.CAP_DSHOW) # VideoCapture(0) sometimes drops error #-1072875772
      if self.capture is None:
        self.capture = cv2.VideoCapture(0)
      self.camera_is_running = True
      self.timer = QTimer(self)
      self.timer.timeout.connect(self.update_frame)
      self.timer.start(2)
 
  def stop_webcam(self):
    if self.camera_is_running:
      self.capture.release()
      self.timer.stop()
      self.camera_is_running = not self.camera_is_running
 
  def update_frame(self): # logic of the main loop
 
    _, base_image = self.capture.read()
    self.display_image(base_image)
 
    processed_image = cv2.cvtColor(base_image, cv2.COLOR_RGB2GRAY)
 
    face_frame, face_frame_gray, left_eye_estimated_position, right_eye_estimated_position, _, _ = process.detect_face(
      base_image, processed_image, self.face_decector)
 
    if face_frame is not None:
      left_eye_frame, right_eye_frame, left_eye_frame_gray, right_eye_frame_gray = process.detect_eyes(face_frame,
                                                       face_frame_gray,
                                                       left_eye_estimated_position,
                                                       right_eye_estimated_position,
                                                       self.eye_detector)
 
      if right_eye_frame is not None:
        if self.rightEyeCheckbox.isChecked():
          right_eye_threshold = self.rightEyeThreshold.value()
          right_keypoints, self.previous_right_keypoints, self.previous_right_blob_area = self.get_keypoints(
            right_eye_frame, right_eye_frame_gray, right_eye_threshold,
            previous_area=self.previous_right_blob_area,
            previous_keypoint=self.previous_right_keypoints)
          process.draw_blobs(right_eye_frame, right_keypoints)
 
        right_eye_frame = np.require(right_eye_frame, np.uint8, 'C')
        self.display_image(right_eye_frame, window='right')
 
      if left_eye_frame is not None:
        if self.leftEyeCheckbox.isChecked():
          left_eye_threshold = self.leftEyeThreshold.value()
          left_keypoints, self.previous_left_keypoints, self.previous_left_blob_area = self.get_keypoints(
            left_eye_frame, left_eye_frame_gray, left_eye_threshold,
            previous_area=self.previous_left_blob_area,
            previous_keypoint=self.previous_left_keypoints)
          process.draw_blobs(left_eye_frame, left_keypoints)
 
        left_eye_frame = np.require(left_eye_frame, np.uint8, 'C')
        self.display_image(left_eye_frame, window='left')
 
    if self.pupilsCheckbox.isChecked(): # draws keypoints on pupils on main window
      self.display_image(base_image)
 
  def get_keypoints(self, frame, frame_gray, threshold, previous_keypoint, previous_area):
 
    keypoints = process.process_eye(frame_gray, threshold, self.detector,
                    prevArea=previous_area)
    if keypoints:
      previous_keypoint = keypoints
      previous_area = keypoints[0].size
    else:
      keypoints = previous_keypoint
    return keypoints, previous_keypoint, previous_area
 
  def display_image(self, img, window='main'):
    # Makes OpenCV images displayable on PyQT, displays them
    qformat = QImage.Format_Indexed8
    if len(img.shape) == 3:
      if img.shape[2] == 4: # RGBA
        qformat = QImage.Format_RGBA8888
      else: # RGB
        qformat = QImage.Format_RGB888
 
    out_image = QImage(img, img.shape[1], img.shape[0], img.strides[0], qformat) # BGR to RGB
    out_image = out_image.rgbSwapped()
    if window == 'main': # main window
      self.baseImage.setPixmap(QPixmap.fromImage(out_image))
      self.baseImage.setScaledContents(True)
    if window == 'left': # left eye window
      self.leftEyeBox.setPixmap(QPixmap.fromImage(out_image))
      self.leftEyeBox.setScaledContents(True)
    if window == 'right': # right eye window
      self.rightEyeBox.setPixmap(QPixmap.fromImage(out_image))
      self.rightEyeBox.setScaledContents(True)
 
 
if __name__ == "__main__":
  app = QApplication(sys.argv)
  window = Window()
  window.setWindowTitle("GUI")
  window.show()
  sys.exit(app.exec_())

人眼检测程序如下:

import os
import cv2
import numpy as np
 
 
def init_cv():
  """loads all of cv2 tools"""
  face_detector = cv2.CascadeClassifier(
    os.path.join("Classifiers", "haar", "haarcascade_frontalface_default.xml"))
  eye_detector = cv2.CascadeClassifier(os.path.join("Classifiers", "haar", 'haarcascade_eye.xml'))
  detector_params = cv2.SimpleBlobDetector_Params()
  detector_params.filterByArea = True
  detector_params.maxArea = 1500
  detector = cv2.SimpleBlobDetector_create(detector_params)
 
  return face_detector, eye_detector, detector
 
 
def detect_face(img, img_gray, cascade):
  """
  Detects all faces, if multiple found, works with the biggest. Returns the following parameters:
  1. The face frame
  2. A gray version of the face frame
  2. Estimated left eye coordinates range
  3. Estimated right eye coordinates range
  5. X of the face frame
  6. Y of the face frame
  """
  coords = cascade.detectMultiScale(img, 1.3, 5)
 
  if len(coords) > 1:
    biggest = (0, 0, 0, 0)
    for i in coords:
      if i[3] > biggest[3]:
        biggest = i
    biggest = np.array([i], np.int32)
  elif len(coords) == 1:
    biggest = coords
  else:
    return None, None, None, None, None, None
  for (x, y, w, h) in biggest:
    frame = img[y:y + h, x:x + w]
    frame_gray = img_gray[y:y + h, x:x + w]
    lest = (int(w * 0.1), int(w * 0.45))
    rest = (int(w * 0.55), int(w * 0.9))
    X = x
    Y = y
 
  return frame, frame_gray, lest, rest, X, Y
 
 
def detect_eyes(img, img_gray, lest, rest, cascade):
  """
  :param img: image frame
  :param img_gray: gray image frame
  :param lest: left eye estimated position, needed to filter out nostril, know what eye is found
  :param rest: right eye estimated position
  :param cascade: Hhaar cascade
  :return: colored and grayscale versions of eye frames
  """
  leftEye = None
  rightEye = None
  leftEyeG = None
  rightEyeG = None
  coords = cascade.detectMultiScale(img_gray, 1.3, 5)
 
  if coords is None or len(coords) == 0:
    pass
  else:
    for (x, y, w, h) in coords:
      eyecenter = int(float(x) + (float(w) / float(2)))
      if lest[0] < eyecenter and eyecenter < lest[1]:
        leftEye = img[y:y + h, x:x + w]
        leftEyeG = img_gray[y:y + h, x:x + w]
        leftEye, leftEyeG = cut_eyebrows(leftEye, leftEyeG)
      elif rest[0] < eyecenter and eyecenter < rest[1]:
        rightEye = img[y:y + h, x:x + w]
        rightEyeG = img_gray[y:y + h, x:x + w]
        rightEye, rightEye = cut_eyebrows(rightEye, rightEyeG)
      else:
        pass # nostril
  return leftEye, rightEye, leftEyeG, rightEyeG
 
 
def process_eye(img, threshold, detector, prevArea=None):
  """
  :param img: eye frame
  :param threshold: threshold value for threshold function
  :param detector: blob detector
  :param prevArea: area of the previous keypoint(used for filtering)
  :return: keypoints
  """
  _, img = cv2.threshold(img, threshold, 255, cv2.THRESH_BINARY)
  img = cv2.erode(img, None, iterations=2)
  img = cv2.dilate(img, None, iterations=4)
  img = cv2.medianBlur(img, 5)
  keypoints = detector.detect(img)
  if keypoints and prevArea and len(keypoints) > 1:
    tmp = 1000
    for keypoint in keypoints: # filter out odd blobs
      if abs(keypoint.size - prevArea) < tmp:
        ans = keypoint
        tmp = abs(keypoint.size - prevArea)
    keypoints = np.array(ans)
 
  return keypoints
 
def cut_eyebrows(img, imgG):
  height, width = img.shape[:2]
  img = img[15:height, 0:width] # cut eyebrows out (15 px)
  imgG = imgG[15:height, 0:width]
 
  return img, imgG
 
 
def draw_blobs(img, keypoints):
  """Draws blobs"""
  cv2.drawKeypoints(img, keypoints, img, (0, 0, 255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python中函数参数调用方式分析
Aug 09 Python
python 用下标截取字符串的实例
Dec 25 Python
python opencv 读取本地视频文件 修改ffmpeg的方法
Jan 26 Python
python的pygal模块绘制反正切函数图像方法
Jul 16 Python
对Python函数设计规范详解
Jul 19 Python
python pillow模块使用方法详解
Aug 30 Python
Python基础之函数基本用法与进阶详解
Jan 02 Python
Python如何实现小程序 无限求和平均
Feb 18 Python
解决pycharm中opencv-python导入cv2后无法自动补全的问题(不用作任何文件上的修改)
Mar 05 Python
Pycharm连接远程服务器过程图解
Apr 30 Python
TensorFlow固化模型的实现操作
May 26 Python
详解python3 GUI刷屏器(附源码)
Feb 18 Python
python的pyecharts绘制各种图表详细(附代码)
Nov 11 #Python
python OpenCV GrabCut使用实例解析
Nov 11 #Python
Python上下文管理器用法及实例解析
Nov 11 #Python
Django 请求Request的具体使用方法
Nov 11 #Python
浅谈Python类中的self到底是干啥的
Nov 11 #Python
python 调试冷知识(小结)
Nov 11 #Python
通过 Django Pagination 实现简单分页功能
Nov 11 #Python
You might like
php中生成随机密码的自定义函数代码
2013/10/21 PHP
简单的php文件上传(实例)
2013/10/27 PHP
JavaScript中的细节分析
2012/06/30 Javascript
JQuery页面的表格数据的增加与分页的实现
2013/12/10 Javascript
javascript数组操作总结和属性、方法介绍
2014/04/05 Javascript
javascript实现 百度翻译 可折叠的分享按钮列表
2015/03/12 Javascript
js简单判断移动端系统的方法
2016/02/25 Javascript
微信小程序 解析网页内容详解及实例
2017/02/22 Javascript
在 Angular 中实现搜索关键字高亮示例
2017/03/21 Javascript
Mobile Web开发基础之四--处理手机设备的横竖屏问题
2017/08/11 Javascript
利用原生js实现html5小游戏之打砖块(附源码)
2018/01/03 Javascript
解决Vue中引入swiper,在数据渲染的时候,发生不滑动的问题
2018/09/27 Javascript
通过vue写一个瀑布流插件代码实例
2019/09/07 Javascript
解决$store.getters调用不执行的问题
2019/11/08 Javascript
[00:10]DOTA2全国高校联赛速递
2018/05/30 DOTA
Python之eval()函数危险性浅析
2014/07/03 Python
Python多进程编程技术实例分析
2014/09/16 Python
Python while、for、生成器、列表推导等语句的执行效率测试
2015/06/03 Python
浅谈python字典多键值及重复键值的使用
2016/11/04 Python
python3 shelve模块的详解
2017/07/08 Python
Python编程pygame模块实现移动的小车示例代码
2018/01/03 Python
python assert的用处示例详解
2019/04/01 Python
python实现批量nii文件转换为png图像
2019/07/18 Python
Django通过设置CORS解决跨域问题
2020/11/26 Python
Python .py生成.pyd文件并打包.exe 的注意事项说明
2021/03/04 Python
CSS3绘制不规则图形的一些方法示例
2015/11/07 HTML / CSS
一道SQL面试题
2012/12/31 面试题
C#如何判断当前用户是否输入某个域
2015/12/07 面试题
大学军训感言
2014/01/10 职场文书
司机检讨书
2014/02/13 职场文书
四风问题党员个人整改措施
2014/10/27 职场文书
离婚协议书格式
2014/11/21 职场文书
考试作弊检讨
2015/01/27 职场文书
学术研讨会主持词
2015/07/04 职场文书
商业计划书范文
2019/04/24 职场文书
Dashboard管理Kubernetes集群与API访问配置
2022/04/01 Servers