Python+OpenCV实现实时眼动追踪的示例代码


Posted in Python onNovember 11, 2019

使用Python+OpenCV实现实时眼动追踪,不需要高端硬件简单摄像头即可实现,效果图如下所示。

Python+OpenCV实现实时眼动追踪的示例代码 

项目演示参见:https://www.bilibili.com/video/av75181965/

项目主程序如下:

import sys
import cv2
import numpy as np
import process
from PyQt5.QtCore import QTimer
from PyQt5.QtWidgets import QApplication, QMainWindow
from PyQt5.uic import loadUi
from PyQt5.QtGui import QPixmap, QImage
 
 
class Window(QMainWindow):
  def __init__(self):
    super(Window, self).__init__()
    loadUi('GUImain.ui', self)
    with open("style.css", "r") as css:
      self.setStyleSheet(css.read())
    self.face_decector, self.eye_detector, self.detector = process.init_cv()
    self.startButton.clicked.connect(self.start_webcam)
    self.stopButton.clicked.connect(self.stop_webcam)
    self.camera_is_running = False
    self.previous_right_keypoints = None
    self.previous_left_keypoints = None
    self.previous_right_blob_area = None
    self.previous_left_blob_area = None
 
  def start_webcam(self):
    if not self.camera_is_running:
      self.capture = cv2.VideoCapture(cv2.CAP_DSHOW) # VideoCapture(0) sometimes drops error #-1072875772
      if self.capture is None:
        self.capture = cv2.VideoCapture(0)
      self.camera_is_running = True
      self.timer = QTimer(self)
      self.timer.timeout.connect(self.update_frame)
      self.timer.start(2)
 
  def stop_webcam(self):
    if self.camera_is_running:
      self.capture.release()
      self.timer.stop()
      self.camera_is_running = not self.camera_is_running
 
  def update_frame(self): # logic of the main loop
 
    _, base_image = self.capture.read()
    self.display_image(base_image)
 
    processed_image = cv2.cvtColor(base_image, cv2.COLOR_RGB2GRAY)
 
    face_frame, face_frame_gray, left_eye_estimated_position, right_eye_estimated_position, _, _ = process.detect_face(
      base_image, processed_image, self.face_decector)
 
    if face_frame is not None:
      left_eye_frame, right_eye_frame, left_eye_frame_gray, right_eye_frame_gray = process.detect_eyes(face_frame,
                                                       face_frame_gray,
                                                       left_eye_estimated_position,
                                                       right_eye_estimated_position,
                                                       self.eye_detector)
 
      if right_eye_frame is not None:
        if self.rightEyeCheckbox.isChecked():
          right_eye_threshold = self.rightEyeThreshold.value()
          right_keypoints, self.previous_right_keypoints, self.previous_right_blob_area = self.get_keypoints(
            right_eye_frame, right_eye_frame_gray, right_eye_threshold,
            previous_area=self.previous_right_blob_area,
            previous_keypoint=self.previous_right_keypoints)
          process.draw_blobs(right_eye_frame, right_keypoints)
 
        right_eye_frame = np.require(right_eye_frame, np.uint8, 'C')
        self.display_image(right_eye_frame, window='right')
 
      if left_eye_frame is not None:
        if self.leftEyeCheckbox.isChecked():
          left_eye_threshold = self.leftEyeThreshold.value()
          left_keypoints, self.previous_left_keypoints, self.previous_left_blob_area = self.get_keypoints(
            left_eye_frame, left_eye_frame_gray, left_eye_threshold,
            previous_area=self.previous_left_blob_area,
            previous_keypoint=self.previous_left_keypoints)
          process.draw_blobs(left_eye_frame, left_keypoints)
 
        left_eye_frame = np.require(left_eye_frame, np.uint8, 'C')
        self.display_image(left_eye_frame, window='left')
 
    if self.pupilsCheckbox.isChecked(): # draws keypoints on pupils on main window
      self.display_image(base_image)
 
  def get_keypoints(self, frame, frame_gray, threshold, previous_keypoint, previous_area):
 
    keypoints = process.process_eye(frame_gray, threshold, self.detector,
                    prevArea=previous_area)
    if keypoints:
      previous_keypoint = keypoints
      previous_area = keypoints[0].size
    else:
      keypoints = previous_keypoint
    return keypoints, previous_keypoint, previous_area
 
  def display_image(self, img, window='main'):
    # Makes OpenCV images displayable on PyQT, displays them
    qformat = QImage.Format_Indexed8
    if len(img.shape) == 3:
      if img.shape[2] == 4: # RGBA
        qformat = QImage.Format_RGBA8888
      else: # RGB
        qformat = QImage.Format_RGB888
 
    out_image = QImage(img, img.shape[1], img.shape[0], img.strides[0], qformat) # BGR to RGB
    out_image = out_image.rgbSwapped()
    if window == 'main': # main window
      self.baseImage.setPixmap(QPixmap.fromImage(out_image))
      self.baseImage.setScaledContents(True)
    if window == 'left': # left eye window
      self.leftEyeBox.setPixmap(QPixmap.fromImage(out_image))
      self.leftEyeBox.setScaledContents(True)
    if window == 'right': # right eye window
      self.rightEyeBox.setPixmap(QPixmap.fromImage(out_image))
      self.rightEyeBox.setScaledContents(True)
 
 
if __name__ == "__main__":
  app = QApplication(sys.argv)
  window = Window()
  window.setWindowTitle("GUI")
  window.show()
  sys.exit(app.exec_())

人眼检测程序如下:

import os
import cv2
import numpy as np
 
 
def init_cv():
  """loads all of cv2 tools"""
  face_detector = cv2.CascadeClassifier(
    os.path.join("Classifiers", "haar", "haarcascade_frontalface_default.xml"))
  eye_detector = cv2.CascadeClassifier(os.path.join("Classifiers", "haar", 'haarcascade_eye.xml'))
  detector_params = cv2.SimpleBlobDetector_Params()
  detector_params.filterByArea = True
  detector_params.maxArea = 1500
  detector = cv2.SimpleBlobDetector_create(detector_params)
 
  return face_detector, eye_detector, detector
 
 
def detect_face(img, img_gray, cascade):
  """
  Detects all faces, if multiple found, works with the biggest. Returns the following parameters:
  1. The face frame
  2. A gray version of the face frame
  2. Estimated left eye coordinates range
  3. Estimated right eye coordinates range
  5. X of the face frame
  6. Y of the face frame
  """
  coords = cascade.detectMultiScale(img, 1.3, 5)
 
  if len(coords) > 1:
    biggest = (0, 0, 0, 0)
    for i in coords:
      if i[3] > biggest[3]:
        biggest = i
    biggest = np.array([i], np.int32)
  elif len(coords) == 1:
    biggest = coords
  else:
    return None, None, None, None, None, None
  for (x, y, w, h) in biggest:
    frame = img[y:y + h, x:x + w]
    frame_gray = img_gray[y:y + h, x:x + w]
    lest = (int(w * 0.1), int(w * 0.45))
    rest = (int(w * 0.55), int(w * 0.9))
    X = x
    Y = y
 
  return frame, frame_gray, lest, rest, X, Y
 
 
def detect_eyes(img, img_gray, lest, rest, cascade):
  """
  :param img: image frame
  :param img_gray: gray image frame
  :param lest: left eye estimated position, needed to filter out nostril, know what eye is found
  :param rest: right eye estimated position
  :param cascade: Hhaar cascade
  :return: colored and grayscale versions of eye frames
  """
  leftEye = None
  rightEye = None
  leftEyeG = None
  rightEyeG = None
  coords = cascade.detectMultiScale(img_gray, 1.3, 5)
 
  if coords is None or len(coords) == 0:
    pass
  else:
    for (x, y, w, h) in coords:
      eyecenter = int(float(x) + (float(w) / float(2)))
      if lest[0] < eyecenter and eyecenter < lest[1]:
        leftEye = img[y:y + h, x:x + w]
        leftEyeG = img_gray[y:y + h, x:x + w]
        leftEye, leftEyeG = cut_eyebrows(leftEye, leftEyeG)
      elif rest[0] < eyecenter and eyecenter < rest[1]:
        rightEye = img[y:y + h, x:x + w]
        rightEyeG = img_gray[y:y + h, x:x + w]
        rightEye, rightEye = cut_eyebrows(rightEye, rightEyeG)
      else:
        pass # nostril
  return leftEye, rightEye, leftEyeG, rightEyeG
 
 
def process_eye(img, threshold, detector, prevArea=None):
  """
  :param img: eye frame
  :param threshold: threshold value for threshold function
  :param detector: blob detector
  :param prevArea: area of the previous keypoint(used for filtering)
  :return: keypoints
  """
  _, img = cv2.threshold(img, threshold, 255, cv2.THRESH_BINARY)
  img = cv2.erode(img, None, iterations=2)
  img = cv2.dilate(img, None, iterations=4)
  img = cv2.medianBlur(img, 5)
  keypoints = detector.detect(img)
  if keypoints and prevArea and len(keypoints) > 1:
    tmp = 1000
    for keypoint in keypoints: # filter out odd blobs
      if abs(keypoint.size - prevArea) < tmp:
        ans = keypoint
        tmp = abs(keypoint.size - prevArea)
    keypoints = np.array(ans)
 
  return keypoints
 
def cut_eyebrows(img, imgG):
  height, width = img.shape[:2]
  img = img[15:height, 0:width] # cut eyebrows out (15 px)
  imgG = imgG[15:height, 0:width]
 
  return img, imgG
 
 
def draw_blobs(img, keypoints):
  """Draws blobs"""
  cv2.drawKeypoints(img, keypoints, img, (0, 0, 255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python实现计算最小编辑距离
Mar 17 Python
python通过pip更新所有已安装的包实现方法
May 19 Python
Python常见内置高效率函数用法示例
Jul 31 Python
Python实现监控键盘鼠标操作示例【基于pyHook与pythoncom模块】
Sep 04 Python
对python tkinter窗口弹出置顶的方法详解
Jun 14 Python
Python中typing模块与类型注解的使用方法
Aug 05 Python
Python字符串处理的8招秘籍(小结)
Aug 13 Python
Python序列化pickle模块使用详解
Mar 05 Python
一篇文章带你搞定Ubuntu中打开Pycharm总是卡顿崩溃
Nov 02 Python
python读写数据读写csv文件(pandas用法)
Dec 14 Python
用Python监控你的朋友都在浏览哪些网站?
May 27 Python
Python软件包安装的三种常见方法
Jul 07 Python
python的pyecharts绘制各种图表详细(附代码)
Nov 11 #Python
python OpenCV GrabCut使用实例解析
Nov 11 #Python
Python上下文管理器用法及实例解析
Nov 11 #Python
Django 请求Request的具体使用方法
Nov 11 #Python
浅谈Python类中的self到底是干啥的
Nov 11 #Python
python 调试冷知识(小结)
Nov 11 #Python
通过 Django Pagination 实现简单分页功能
Nov 11 #Python
You might like
自己动手做一个SQL解释器
2006/10/09 PHP
PHP伪造referer实例代码
2008/09/20 PHP
PHP在innodb引擎下快速代建全文搜索功能简明教程【基于xunsearch】
2016/10/14 PHP
Extjs中DisplayField的日期或者数字格式化扩展
2010/09/03 Javascript
js限制文本框为整数和货币的函数代码
2010/10/13 Javascript
一个关于javascript匿名函数的问题分析
2012/03/30 Javascript
javascript弹出窗口实现代码
2015/11/12 Javascript
利用jQuery设计一个简单的web音乐播放器的实例分享
2016/03/08 Javascript
jQuery实现页面滚动时智能浮动定位
2017/01/08 Javascript
在vue-cli脚手架中配置一个vue-router前端路由
2017/07/03 Javascript
vue jsx 使用指南及vue.js 使用jsx语法的方法
2017/11/11 Javascript
使用Node.js写一个代码生成器的方法步骤
2019/05/10 Javascript
layui默认选中table的CheckBox复选框方法
2019/09/19 Javascript
使用JS location实现搜索框历史记录功能
2019/12/23 Javascript
JS Html转义和反转义(html编码和解码)的实现与使用方法总结
2020/03/10 Javascript
js实现时间日期校验
2020/05/26 Javascript
在Mac OS系统上安装Python的Pillow库的教程
2015/11/20 Python
Python读取一个目录下所有目录和文件的方法
2016/07/15 Python
原生python实现knn分类算法
2019/10/24 Python
Django数据库迁移常见使用方法
2020/11/12 Python
利用HTML5实现使用按钮控制背景音乐开关
2015/09/21 HTML / CSS
锐步香港官方网上商店:Reebok香港
2020/11/05 全球购物
NHL官方在线商店:Shop.NHL.com
2020/05/01 全球购物
教师党员一句话承诺
2014/03/28 职场文书
《富饶的西沙群岛》教学反思
2014/04/09 职场文书
细节决定成败演讲稿
2014/05/12 职场文书
四风剖析查摆对照检查材料思想汇报
2014/09/24 职场文书
2016大学自主招生推荐信范文
2015/03/23 职场文书
活动费用申请报告
2015/05/15 职场文书
如何在Python中创建二叉树
2021/03/30 Python
Golang中异常处理机制详解
2021/06/08 Golang
Python实现简单的猜单词
2021/06/15 Python
JVM钩子函数的使用场景详解
2021/08/23 Java/Android
zabbix自定义监控nginx状态实现过程
2021/11/01 Servers
浅析Python中的随机采样和概率分布
2021/12/06 Python
Java 多态分析
2022/04/26 Java/Android