python sklearn常用分类算法模型的调用


Posted in Python onOctober 16, 2019

本文实例为大家分享了python sklearn分类算法模型调用的具体代码,供大家参考,具体内容如下

实现对'NB', 'KNN', 'LR', 'RF', 'DT', 'SVM','SVMCV', 'GBDT'模型的简单调用。

# coding=gbk
 
import time 
from sklearn import metrics 
import pickle as pickle 
import pandas as pd
 
 
# Multinomial Naive Bayes Classifier 
def naive_bayes_classifier(train_x, train_y): 
  from sklearn.naive_bayes import MultinomialNB 
  model = MultinomialNB(alpha=0.01) 
  model.fit(train_x, train_y) 
  return model 
 
 
# KNN Classifier 
def knn_classifier(train_x, train_y): 
  from sklearn.neighbors import KNeighborsClassifier 
  model = KNeighborsClassifier() 
  model.fit(train_x, train_y) 
  return model 
 
 
# Logistic Regression Classifier 
def logistic_regression_classifier(train_x, train_y): 
  from sklearn.linear_model import LogisticRegression 
  model = LogisticRegression(penalty='l2') 
  model.fit(train_x, train_y) 
  return model 
 
 
# Random Forest Classifier 
def random_forest_classifier(train_x, train_y): 
  from sklearn.ensemble import RandomForestClassifier 
  model = RandomForestClassifier(n_estimators=8) 
  model.fit(train_x, train_y) 
  return model 
 
 
# Decision Tree Classifier 
def decision_tree_classifier(train_x, train_y): 
  from sklearn import tree 
  model = tree.DecisionTreeClassifier() 
  model.fit(train_x, train_y) 
  return model 
 
 
# GBDT(Gradient Boosting Decision Tree) Classifier 
def gradient_boosting_classifier(train_x, train_y): 
  from sklearn.ensemble import GradientBoostingClassifier 
  model = GradientBoostingClassifier(n_estimators=200) 
  model.fit(train_x, train_y) 
  return model 
 
 
# SVM Classifier 
def svm_classifier(train_x, train_y): 
  from sklearn.svm import SVC 
  model = SVC(kernel='rbf', probability=True) 
  model.fit(train_x, train_y) 
  return model 
 
# SVM Classifier using cross validation 
def svm_cross_validation(train_x, train_y): 
  from sklearn.grid_search import GridSearchCV 
  from sklearn.svm import SVC 
  model = SVC(kernel='rbf', probability=True) 
  param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]} 
  grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1) 
  grid_search.fit(train_x, train_y) 
  best_parameters = grid_search.best_estimator_.get_params() 
  for para, val in list(best_parameters.items()): 
    print(para, val) 
  model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True) 
  model.fit(train_x, train_y) 
  return model 
 
def read_data(data_file): 
  data = pd.read_csv(data_file)
  train = data[:int(len(data)*0.9)]
  test = data[int(len(data)*0.9):]
  train_y = train.label
  train_x = train.drop('label', axis=1)
  test_y = test.label
  test_x = test.drop('label', axis=1)
  return train_x, train_y, test_x, test_y
   
if __name__ == '__main__': 
  data_file = "H:\\Research\\data\\trainCG.csv" 
  thresh = 0.5 
  model_save_file = None 
  model_save = {} 
  
  test_classifiers = ['NB', 'KNN', 'LR', 'RF', 'DT', 'SVM','SVMCV', 'GBDT'] 
  classifiers = {'NB':naive_bayes_classifier,  
         'KNN':knn_classifier, 
          'LR':logistic_regression_classifier, 
          'RF':random_forest_classifier, 
          'DT':decision_tree_classifier, 
         'SVM':svm_classifier, 
        'SVMCV':svm_cross_validation, 
         'GBDT':gradient_boosting_classifier 
  } 
   
  print('reading training and testing data...') 
  train_x, train_y, test_x, test_y = read_data(data_file) 
   
  for classifier in test_classifiers: 
    print('******************* %s ********************' % classifier) 
    start_time = time.time() 
    model = classifiers[classifier](train_x, train_y) 
    print('training took %fs!' % (time.time() - start_time)) 
    predict = model.predict(test_x) 
    if model_save_file != None: 
      model_save[classifier] = model 
    precision = metrics.precision_score(test_y, predict) 
    recall = metrics.recall_score(test_y, predict) 
    print('precision: %.2f%%, recall: %.2f%%' % (100 * precision, 100 * recall)) 
    accuracy = metrics.accuracy_score(test_y, predict) 
    print('accuracy: %.2f%%' % (100 * accuracy))  
 
  if model_save_file != None: 
    pickle.dump(model_save, open(model_save_file, 'wb'))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python中查找excel某一列的重复数据 剔除之后打印
Feb 10 Python
利用一个简单的例子窥探CPython内核的运行机制
Mar 30 Python
Python中文件操作简明介绍
Apr 13 Python
qpython3 读取安卓lastpass Cookies
Jun 19 Python
python3+PyQt5使用数据库表视图
Apr 24 Python
python矩阵的转置和逆转实例
Dec 12 Python
python字典和json.dumps()的遇到的坑分析
Mar 11 Python
Python xml、字典、json、类四种数据类型如何实现互相转换
May 27 Python
Python-for循环的内部机制
Jun 12 Python
python如何使用腾讯云发送短信
Sep 17 Python
Python中os模块的简单使用及重命名操作
Apr 17 Python
Python中tkinter的用户登录管理的实现
Apr 22 Python
Python使用selenium + headless chrome获取网页内容的方法示例
Oct 16 #Python
使用python实现kNN分类算法
Oct 16 #Python
Python生成验证码、计算具体日期是一年中的第几天实例代码详解
Oct 16 #Python
python可视化实现KNN算法
Oct 16 #Python
python实现KNN分类算法
Oct 16 #Python
python子线程退出及线程退出控制的代码
Oct 16 #Python
python Pillow图像处理方法汇总
Oct 16 #Python
You might like
PHP删除目录及目录下所有文件的方法详解
2013/06/06 PHP
使用php的HTTP请求的库Requests实现美女图片墙
2015/02/22 PHP
PHP实现全角字符转为半角方法汇总
2015/07/09 PHP
laravel学习教程之存取器
2016/07/30 PHP
PHP实现将base64编码字符串转换成图片示例
2018/06/22 PHP
PHP实现的装箱算法示例
2018/06/23 PHP
Javascript条件判断使用小技巧总结
2008/09/08 Javascript
javascript xml为数据源的下拉框控件
2009/07/07 Javascript
Javascript 面向对象 继承
2010/05/13 Javascript
精通Javascript系列之数据类型 字符串
2011/06/08 Javascript
用jquery和json从后台获得数据集的代码
2011/11/07 Javascript
学习从实践开始之jQuery插件开发 对话框插件开发
2012/04/26 Javascript
js 阻止子元素响应父元素的onmouseout事件具体实现
2013/12/23 Javascript
JavaScript实现的图像模糊算法代码分享
2014/04/22 Javascript
使用JavaScript+canvas实现图片裁剪
2015/01/30 Javascript
JavaScript获取当前网页最后修改时间的方法
2015/04/03 Javascript
Bootstrap入门书籍之(零)Bootstrap简介
2016/02/17 Javascript
jquery animate动画持续运动的实例
2017/11/29 jQuery
Vue中使用vee-validate表单验证的方法
2018/05/09 Javascript
JavaScript设计模式之单例模式原理与用法实例分析
2018/07/26 Javascript
Egg.js 中 AJax 上传文件获取参数的方法
2018/10/10 Javascript
JavaScript 作用域实例分析
2019/10/02 Javascript
Vue 组件注册全解析
2020/12/17 Vue.js
举例讲解Python的Tornado框架实现数据可视化的教程
2015/05/02 Python
深入学习Python中的上下文管理器与else块
2017/08/27 Python
超简单使用Python换脸实例
2019/03/27 Python
tensorboard显示空白的解决
2020/02/15 Python
优秀少先队工作者事迹材料
2014/05/13 职场文书
村居抓节水倡议书
2014/05/19 职场文书
岗位安全生产责任书
2014/07/28 职场文书
业绩倒数第一的检讨书
2014/09/24 职场文书
2014年租房协议书范本
2014/10/30 职场文书
实习协议书
2015/01/27 职场文书
2015年世界卫生日活动总结
2015/02/09 职场文书
2015年服务员个人工作总结
2015/05/27 职场文书
解读Vue组件注册方式
2021/05/15 Vue.js