python sklearn常用分类算法模型的调用


Posted in Python onOctober 16, 2019

本文实例为大家分享了python sklearn分类算法模型调用的具体代码,供大家参考,具体内容如下

实现对'NB', 'KNN', 'LR', 'RF', 'DT', 'SVM','SVMCV', 'GBDT'模型的简单调用。

# coding=gbk
 
import time 
from sklearn import metrics 
import pickle as pickle 
import pandas as pd
 
 
# Multinomial Naive Bayes Classifier 
def naive_bayes_classifier(train_x, train_y): 
  from sklearn.naive_bayes import MultinomialNB 
  model = MultinomialNB(alpha=0.01) 
  model.fit(train_x, train_y) 
  return model 
 
 
# KNN Classifier 
def knn_classifier(train_x, train_y): 
  from sklearn.neighbors import KNeighborsClassifier 
  model = KNeighborsClassifier() 
  model.fit(train_x, train_y) 
  return model 
 
 
# Logistic Regression Classifier 
def logistic_regression_classifier(train_x, train_y): 
  from sklearn.linear_model import LogisticRegression 
  model = LogisticRegression(penalty='l2') 
  model.fit(train_x, train_y) 
  return model 
 
 
# Random Forest Classifier 
def random_forest_classifier(train_x, train_y): 
  from sklearn.ensemble import RandomForestClassifier 
  model = RandomForestClassifier(n_estimators=8) 
  model.fit(train_x, train_y) 
  return model 
 
 
# Decision Tree Classifier 
def decision_tree_classifier(train_x, train_y): 
  from sklearn import tree 
  model = tree.DecisionTreeClassifier() 
  model.fit(train_x, train_y) 
  return model 
 
 
# GBDT(Gradient Boosting Decision Tree) Classifier 
def gradient_boosting_classifier(train_x, train_y): 
  from sklearn.ensemble import GradientBoostingClassifier 
  model = GradientBoostingClassifier(n_estimators=200) 
  model.fit(train_x, train_y) 
  return model 
 
 
# SVM Classifier 
def svm_classifier(train_x, train_y): 
  from sklearn.svm import SVC 
  model = SVC(kernel='rbf', probability=True) 
  model.fit(train_x, train_y) 
  return model 
 
# SVM Classifier using cross validation 
def svm_cross_validation(train_x, train_y): 
  from sklearn.grid_search import GridSearchCV 
  from sklearn.svm import SVC 
  model = SVC(kernel='rbf', probability=True) 
  param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]} 
  grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1) 
  grid_search.fit(train_x, train_y) 
  best_parameters = grid_search.best_estimator_.get_params() 
  for para, val in list(best_parameters.items()): 
    print(para, val) 
  model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True) 
  model.fit(train_x, train_y) 
  return model 
 
def read_data(data_file): 
  data = pd.read_csv(data_file)
  train = data[:int(len(data)*0.9)]
  test = data[int(len(data)*0.9):]
  train_y = train.label
  train_x = train.drop('label', axis=1)
  test_y = test.label
  test_x = test.drop('label', axis=1)
  return train_x, train_y, test_x, test_y
   
if __name__ == '__main__': 
  data_file = "H:\\Research\\data\\trainCG.csv" 
  thresh = 0.5 
  model_save_file = None 
  model_save = {} 
  
  test_classifiers = ['NB', 'KNN', 'LR', 'RF', 'DT', 'SVM','SVMCV', 'GBDT'] 
  classifiers = {'NB':naive_bayes_classifier,  
         'KNN':knn_classifier, 
          'LR':logistic_regression_classifier, 
          'RF':random_forest_classifier, 
          'DT':decision_tree_classifier, 
         'SVM':svm_classifier, 
        'SVMCV':svm_cross_validation, 
         'GBDT':gradient_boosting_classifier 
  } 
   
  print('reading training and testing data...') 
  train_x, train_y, test_x, test_y = read_data(data_file) 
   
  for classifier in test_classifiers: 
    print('******************* %s ********************' % classifier) 
    start_time = time.time() 
    model = classifiers[classifier](train_x, train_y) 
    print('training took %fs!' % (time.time() - start_time)) 
    predict = model.predict(test_x) 
    if model_save_file != None: 
      model_save[classifier] = model 
    precision = metrics.precision_score(test_y, predict) 
    recall = metrics.recall_score(test_y, predict) 
    print('precision: %.2f%%, recall: %.2f%%' % (100 * precision, 100 * recall)) 
    accuracy = metrics.accuracy_score(test_y, predict) 
    print('accuracy: %.2f%%' % (100 * accuracy))  
 
  if model_save_file != None: 
    pickle.dump(model_save, open(model_save_file, 'wb'))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python入门之语句(if语句、while语句、for语句)
Jan 19 Python
python脚本内运行linux命令的方法
Jul 02 Python
python中defaultdict的用法详解
Jun 07 Python
Python 数据处理库 pandas 入门教程基本操作
Apr 19 Python
Python简单读写Xls格式文档的方法示例
Aug 17 Python
Pycharm设置utf-8自动显示方法
Jan 17 Python
python基于递归解决背包问题详解
Jul 03 Python
Python上下文管理器类和上下文管理器装饰器contextmanager用法实例分析
Nov 07 Python
python实现自动化报表功能(Oracle/plsql/Excel/多线程)
Dec 02 Python
python实现的批量分析xml标签中各个类别个数功能示例
Dec 30 Python
详解Python中pyautogui库的最全使用方法
Apr 01 Python
python 使用elasticsearch 实现翻页的三种方式
Jul 31 Python
Python使用selenium + headless chrome获取网页内容的方法示例
Oct 16 #Python
使用python实现kNN分类算法
Oct 16 #Python
Python生成验证码、计算具体日期是一年中的第几天实例代码详解
Oct 16 #Python
python可视化实现KNN算法
Oct 16 #Python
python实现KNN分类算法
Oct 16 #Python
python子线程退出及线程退出控制的代码
Oct 16 #Python
python Pillow图像处理方法汇总
Oct 16 #Python
You might like
一段防盗连的PHP代码
2006/12/06 PHP
PHP JSON 数据解析代码
2010/05/26 PHP
linux mint下安装phpstorm2020包括JDK部分的教程详解
2020/09/17 PHP
一个报数游戏js版(约瑟夫环问题)
2010/08/05 Javascript
javascript数组操作总结和属性、方法介绍
2014/04/05 Javascript
jquery使用jxl插件导出excel示例
2014/04/14 Javascript
一种新的javascript对象创建方式Object.create()
2015/12/28 Javascript
神奇!js+CSS+DIV实现文字颜色渐变效果
2016/03/16 Javascript
JS封装的三级联动菜单(使用时只需要一行js代码)
2016/10/24 Javascript
在一个页面重复使用一个js函数的方法详解
2016/12/26 Javascript
基于JS实现二维码图片固定在右下角某处并跟随滚动条滚动
2017/02/08 Javascript
vue中mint-ui环境搭建详细介绍
2017/04/06 Javascript
Angular中的interceptors拦截器
2017/06/25 Javascript
bootstrap自定义样式之bootstrap实现侧边导航栏功能
2018/09/10 Javascript
微信小程序动态添加view组件的实例代码
2019/05/23 Javascript
JS字符串与二进制的相互转化实例代码详解
2019/06/28 Javascript
JavaScript RegExp 对象用法详解
2019/09/24 Javascript
[48:44]2014 DOTA2国际邀请赛中国区预选赛5.21 TongFu VS HGT
2014/05/22 DOTA
[01:53]2016完美“圣”典风云人物:Maybe专访
2016/12/05 DOTA
[54:29]2018DOTA2亚洲邀请赛 4.7 淘汰赛 VP vs LGD 第二场
2018/04/09 DOTA
python集合比较(交集,并集,差集)方法详解
2018/09/13 Python
从0开始的Python学习016异常
2019/04/08 Python
python接口自动化(十七)--Json 数据处理---一次爬坑记(详解)
2019/04/18 Python
python opencv将表格图片按照表格框线分割和识别
2019/10/30 Python
Django框架安装方法图文详解
2019/11/04 Python
浅析python中while循环和for循环
2019/11/19 Python
python 实现的IP 存活扫描脚本
2020/12/10 Python
html5设计原理(推荐收藏)
2014/05/17 HTML / CSS
北美Newegg打造的全球尖货海购平台:tt海购
2018/09/28 全球购物
如何利用cmp命令比较文件
2016/04/11 面试题
售前工程师职业生涯规划
2014/03/02 职场文书
聘用意向书范本
2014/04/01 职场文书
法人委托书范本
2014/04/04 职场文书
党的群众路线学习材料
2014/05/16 职场文书
青年联谊会致辞
2015/07/31 职场文书
html+css实现赛博朋克风格按钮
2021/05/26 HTML / CSS