Pytorch 使用CNN图像分类的实现


Posted in Python onJune 16, 2020

需求

在4*4的图片中,比较外围黑色像素点和内圈黑色像素点个数的大小将图片分类

Pytorch 使用CNN图像分类的实现

如上图图片外围黑色像素点5个大于内圈黑色像素点1个分为0类反之1类

想法

  • 通过numpy、PIL构造4*4的图像数据集
  • 构造自己的数据集类
  • 读取数据集对数据集选取减少偏斜
  • cnn设计因为特征少,直接1*1卷积层
  • 或者在4*4外围添加padding成6*6,设计2*2的卷积核得出3*3再接上全连接层

代码

import torch
import torchvision
import torchvision.transforms as transforms
import numpy as np
from PIL import Image

构造数据集

import csv
import collections
import os
import shutil

def buildDataset(root,dataType,dataSize):
  """构造数据集
  构造的图片存到root/{dataType}Data
  图片地址和标签的csv文件存到 root/{dataType}DataInfo.csv
  Args:
    root:str
      项目目录
    dataType:str
      'train'或者‘test'
    dataNum:int
      数据大小
  Returns:
  """
  dataInfo = []
  dataPath = f'{root}/{dataType}Data'
  if not os.path.exists(dataPath):
    os.makedirs(dataPath)
  else:
    shutil.rmtree(dataPath)
    os.mkdir(dataPath)
    
  for i in range(dataSize):
    # 创建0,1 数组
    imageArray=np.random.randint(0,2,(4,4))
    # 计算0,1数量得到标签
    allBlackNum = collections.Counter(imageArray.flatten())[0]
    innerBlackNum = collections.Counter(imageArray[1:3,1:3].flatten())[0]
    label = 0 if (allBlackNum-innerBlackNum)>innerBlackNum else 1
    # 将图片保存
    path = f'{dataPath}/{i}.jpg'
    dataInfo.append([path,label])
    im = Image.fromarray(np.uint8(imageArray*255))
    im = im.convert('1') 
    im.save(path)
  # 将图片地址和标签存入csv文件
  filePath = f'{root}/{dataType}DataInfo.csv'
  with open(filePath, 'w') as f:
    writer = csv.writer(f)
    writer.writerows(dataInfo)
root=r'/Users/null/Documents/PythonProject/Classifier'

构造训练数据集

buildDataset(root,'train',20000)

构造测试数据集

buildDataset(root,'test',10000)

读取数据集

class MyDataset(torch.utils.data.Dataset):

  def __init__(self, root, datacsv, transform=None):
    super(MyDataset, self).__init__()
    with open(f'{root}/{datacsv}', 'r') as f:
      imgs = []
      # 读取csv信息到imgs列表
      for path,label in map(lambda line:line.rstrip().split(','),f):
        imgs.append((path, int(label)))
    self.imgs = imgs
    self.transform = transform if transform is not None else lambda x:x
    
  def __getitem__(self, index):
    path, label = self.imgs[index]
    img = self.transform(Image.open(path).convert('1'))
    return img, label

  def __len__(self):
    return len(self.imgs)
trainData=MyDataset(root = root,datacsv='trainDataInfo.csv', transform=transforms.ToTensor())
testData=MyDataset(root = root,datacsv='testDataInfo.csv', transform=transforms.ToTensor())

处理数据集使得数据集不偏斜

import itertools

def chooseData(dataset,scale):
  # 将类别为1的排序到前面
  dataset.imgs.sort(key=lambda x:x[1],reverse=True)
  # 获取类别1的数目 ,取scale倍的数组,得数据不那么偏斜
  trueNum =collections.Counter(itertools.chain.from_iterable(dataset.imgs))[1]
  end = min(trueNum*scale,len(dataset))
  dataset.imgs=dataset.imgs[:end]
scale = 4
chooseData(trainData,scale)
chooseData(testData,scale)
len(trainData),len(testData)
(2250, 1122)
import torch.utils.data as Data

# 超参数
batchSize = 50
lr = 0.1
numEpochs = 20

trainIter = Data.DataLoader(dataset=trainData, batch_size=batchSize, shuffle=True)
testIter = Data.DataLoader(dataset=testData, batch_size=batchSize)

定义模型

from torch import nn
from torch.autograd import Variable
from torch.nn import Module,Linear,Sequential,Conv2d,ReLU,ConstantPad2d
import torch.nn.functional as F
class Net(Module):  
  def __init__(self):
    super(Net, self).__init__()

    self.cnnLayers = Sequential(
      # padding添加1层常数1,设定卷积核为2*2
      ConstantPad2d(1, 1),
      Conv2d(1, 1, kernel_size=2, stride=2,bias=True)
    )
    self.linearLayers = Sequential(
      Linear(9, 2)
    )

  def forward(self, x):
    x = self.cnnLayers(x)
    x = x.view(x.shape[0], -1)
    x = self.linearLayers(x)
    return x
class Net2(Module):  
  def __init__(self):
    super(Net2, self).__init__()

    self.cnnLayers = Sequential(
      Conv2d(1, 1, kernel_size=1, stride=1,bias=True)
    )
    self.linearLayers = Sequential(
      ReLU(),
      Linear(16, 2)
    )

  def forward(self, x):
    x = self.cnnLayers(x)
    x = x.view(x.shape[0], -1)
    x = self.linearLayers(x)
    return x

定义损失函数

# 交叉熵损失函数
loss = nn.CrossEntropyLoss()
loss2 = nn.CrossEntropyLoss()

定义优化算法

net = Net()
optimizer = torch.optim.SGD(net.parameters(),lr = lr)
net2 = Net2()
optimizer2 = torch.optim.SGD(net2.parameters(),lr = lr)

训练模型

# 计算准确率
def evaluateAccuracy(dataIter, net):
  accSum, n = 0.0, 0
  with torch.no_grad():
    for X, y in dataIter:
      accSum += (net(X).argmax(dim=1) == y).float().sum().item()
      n += y.shape[0]
  return accSum / n
def train(net, trainIter, testIter, loss, numEpochs, batchSize,
       optimizer):
  for epoch in range(numEpochs):
    trainLossSum, trainAccSum, n = 0.0, 0.0, 0
    for X,y in trainIter:
      yHat = net(X)
      l = loss(yHat,y).sum()
      optimizer.zero_grad()
      l.backward()
      optimizer.step()
      # 计算训练准确度和loss
      trainLossSum += l.item()
      trainAccSum += (yHat.argmax(dim=1) == y).sum().item()
      n += y.shape[0]
    # 评估测试准确度
    testAcc = evaluateAccuracy(testIter, net)
    print('epoch {:d}, loss {:.4f}, train acc {:.3f}, test acc {:.3f}'.format(epoch + 1, trainLossSum / n, trainAccSum / n, testAcc))

Net模型训练

train(net, trainIter, testIter, loss, numEpochs, batchSize,optimizer)
epoch 1, loss 0.0128, train acc 0.667, test acc 0.667
epoch 2, loss 0.0118, train acc 0.683, test acc 0.760
epoch 3, loss 0.0104, train acc 0.742, test acc 0.807
epoch 4, loss 0.0093, train acc 0.769, test acc 0.772
epoch 5, loss 0.0085, train acc 0.797, test acc 0.745
epoch 6, loss 0.0084, train acc 0.798, test acc 0.807
epoch 7, loss 0.0082, train acc 0.804, test acc 0.816
epoch 8, loss 0.0078, train acc 0.816, test acc 0.812
epoch 9, loss 0.0077, train acc 0.818, test acc 0.817
epoch 10, loss 0.0074, train acc 0.824, test acc 0.826
epoch 11, loss 0.0072, train acc 0.836, test acc 0.819
epoch 12, loss 0.0075, train acc 0.823, test acc 0.829
epoch 13, loss 0.0071, train acc 0.839, test acc 0.797
epoch 14, loss 0.0067, train acc 0.849, test acc 0.824
epoch 15, loss 0.0069, train acc 0.848, test acc 0.843
epoch 16, loss 0.0064, train acc 0.864, test acc 0.851
epoch 17, loss 0.0062, train acc 0.867, test acc 0.780
epoch 18, loss 0.0060, train acc 0.871, test acc 0.864
epoch 19, loss 0.0057, train acc 0.881, test acc 0.890
epoch 20, loss 0.0055, train acc 0.885, test acc 0.897

Net2模型训练

# batchSize = 50 
# lr = 0.1
# numEpochs = 15 下得出的结果
train(net2, trainIter, testIter, loss2, numEpochs, batchSize,optimizer2)

epoch 1, loss 0.0119, train acc 0.638, test acc 0.676
epoch 2, loss 0.0079, train acc 0.823, test acc 0.986
epoch 3, loss 0.0046, train acc 0.987, test acc 0.977
epoch 4, loss 0.0030, train acc 0.983, test acc 0.973
epoch 5, loss 0.0023, train acc 0.981, test acc 0.976
epoch 6, loss 0.0019, train acc 0.980, test acc 0.988
epoch 7, loss 0.0016, train acc 0.984, test acc 0.984
epoch 8, loss 0.0014, train acc 0.985, test acc 0.986
epoch 9, loss 0.0013, train acc 0.987, test acc 0.992
epoch 10, loss 0.0011, train acc 0.989, test acc 0.993
epoch 11, loss 0.0010, train acc 0.989, test acc 0.996
epoch 12, loss 0.0010, train acc 0.992, test acc 0.994
epoch 13, loss 0.0009, train acc 0.993, test acc 0.994
epoch 14, loss 0.0008, train acc 0.995, test acc 0.996
epoch 15, loss 0.0008, train acc 0.994, test acc 0.998

测试

test = torch.Tensor([[[[0,0,0,0],[0,1,1,0],[0,1,1,0],[0,0,0,0]]],
         [[[1,1,1,1],[1,0,0,1],[1,0,0,1],[1,1,1,1]]],
         [[[0,1,0,1],[1,0,0,1],[1,0,0,1],[0,0,0,1]]],
         [[[0,1,1,1],[1,0,0,1],[1,0,0,1],[0,0,0,1]]],
         [[[0,0,1,1],[1,0,0,1],[1,0,0,1],[1,0,1,0]]],
         [[[0,0,1,0],[0,1,0,1],[0,0,1,1],[1,0,1,0]]],
         [[[1,1,1,0],[1,0,0,1],[1,0,1,1],[1,0,1,1]]]
         ])

target=torch.Tensor([0,1,0,1,1,0,1])
test
tensor([[[[0., 0., 0., 0.],
     [0., 1., 1., 0.],
     [0., 1., 1., 0.],
     [0., 0., 0., 0.]]],

​

    [[[1., 1., 1., 1.],
     [1., 0., 0., 1.],
     [1., 0., 0., 1.],
     [1., 1., 1., 1.]]],

​

    [[[0., 1., 0., 1.],
     [1., 0., 0., 1.],
     [1., 0., 0., 1.],
     [0., 0., 0., 1.]]],

​

    [[[0., 1., 1., 1.],
     [1., 0., 0., 1.],
     [1., 0., 0., 1.],
     [0., 0., 0., 1.]]],

​

    [[[0., 0., 1., 1.],
     [1., 0., 0., 1.],
     [1., 0., 0., 1.],
     [1., 0., 1., 0.]]],

​

    [[[0., 0., 1., 0.],
     [0., 1., 0., 1.],
     [0., 0., 1., 1.],
     [1., 0., 1., 0.]]],

​

    [[[1., 1., 1., 0.],
     [1., 0., 0., 1.],
     [1., 0., 1., 1.],
     [1., 0., 1., 1.]]]])



with torch.no_grad():
  output = net(test)
  output2 = net2(test)
predictions =output.argmax(dim=1)
predictions2 =output2.argmax(dim=1)
# 比较结果
print(f'Net测试结果{predictions.eq(target)}')
print(f'Net2测试结果{predictions2.eq(target)}')
Net测试结果tensor([ True, True, False, True, True, True, True])
Net2测试结果tensor([False, True, False, True, True, False, True])

到此这篇关于Pytorch 使用CNN图像分类的实现的文章就介绍到这了,更多相关Pytorch CNN图像分类内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python 列表理解及使用方法
Oct 27 Python
python编程嵌套函数实例代码
Feb 11 Python
python实现数独游戏 java简单实现数独游戏
Mar 30 Python
通过python顺序修改文件名字的方法
Jul 11 Python
python将.ppm格式图片转换成.jpg格式文件的方法
Oct 27 Python
值得收藏的10道python 面试题
Apr 15 Python
python3 批量获取对应端口服务的实例
Jul 25 Python
python 两个数据库postgresql对比
Oct 21 Python
k-means 聚类算法与Python实现代码
Jun 01 Python
Numpy中np.random.rand()和np.random.randn() 用法和区别详解
Oct 23 Python
用60行代码实现Python自动抢微信红包
Feb 04 Python
python实现三阶魔方还原的示例代码
Apr 28 Python
利用python中的matplotlib打印混淆矩阵实例
Jun 16 #Python
Python SMTP配置参数并发送邮件
Jun 16 #Python
基于matplotlib中ion()和ioff()的使用详解
Jun 16 #Python
Python数据相关系数矩阵和热力图轻松实现教程
Jun 16 #Python
matplotlib.pyplot.matshow 矩阵可视化实例
Jun 16 #Python
使用python matploblib库绘制准确率,损失率折线图
Jun 16 #Python
为什么称python为胶水语言
Jun 16 #Python
You might like
把77A收信机改造成收音机
2021/03/02 无线电
PHP 面向对象程序设计(oop)学习笔记 (四) - 异常处理类Exception
2014/06/12 PHP
php使用百度ping服务代码实例
2014/06/19 PHP
php中的动态调用实例分析
2015/01/07 PHP
CL vs ForZe BO5 第二场 2.13
2021/03/10 DOTA
jquery 1.4.2发布!主要是性能与API
2010/02/25 Javascript
JQuery魔力之$("tagName")与selector
2012/03/05 Javascript
删除javascript所创建子节点的方法
2015/05/21 Javascript
swtich/if...else的替代语句
2015/08/16 Javascript
每天一篇javascript学习小结(Array数组)
2015/11/11 Javascript
基于jquery实现省市联动特效
2015/12/17 Javascript
封装属于自己的JS组件
2016/01/27 Javascript
基于Turn.js 实现翻书效果实例解析
2016/06/20 Javascript
bootstrap精简教程_动力节点Java学院整理
2017/07/14 Javascript
vue使用vuex实现首页导航切换不同路由的方法
2019/05/08 Javascript
[01:24]DOTA2上海特锦赛OG战队抵达 专车接机入驻总统套房
2016/02/23 DOTA
python生成式的send()方法(详解)
2017/05/08 Python
Python实现多线程抓取网页功能实例详解
2017/06/08 Python
django 2.0更新的10条注意事项总结
2018/01/05 Python
Python实现购物车程序
2018/04/16 Python
python3去掉string中的标点符号方法
2019/01/22 Python
Python高级特性与几种函数的讲解
2019/03/08 Python
Python函数装饰器常见使用方法实例详解
2019/03/30 Python
python topk()函数求最大和最小值实例
2020/04/02 Python
pandas 像SQL一样使用WHERE IN查询条件说明
2020/06/05 Python
Python使用pyenv实现多环境管理
2021/02/05 Python
员工自我鉴定范文
2013/10/06 职场文书
劳资员岗位职责
2013/11/11 职场文书
国家励志奖学金个人先进事迹材料
2014/05/04 职场文书
医药销售自荐书
2014/05/29 职场文书
车辆年审委托书范本
2014/09/18 职场文书
房屋租赁意向书范本
2015/05/09 职场文书
2016党员学习心得体会范文
2016/01/23 职场文书
python实现简单的井字棋
2021/05/26 Python
python实现手机推送 代码也就10行左右
2022/04/12 Python
python神经网络Xception模型
2022/05/06 Python