Python数据相关系数矩阵和热力图轻松实现教程


Posted in Python onJune 16, 2020

对其中的参数进行解释

plt.subplots(figsize=(9, 9))设置画面大小,会使得整个画面等比例放大的

sns.heapmap()这个当然是用来生成热力图的啦

df是DataFrame, pandas的这个类还是很常用的啦~

df.corr()就是得到这个dataframe的相关系数矩阵

把这个矩阵直接丢给sns.heapmap中做参数就好啦

sns.heapmap中annot=True,意思是显式热力图上的数值大小。

sns.heapmap中square=True,意思是将图变成一个正方形,默认是一个矩形

sns.heapmap中cmap="Blues"是一种模式,就是图颜色配置方案啦,我很喜欢这一款的。

sns.heapmap中vmax是显示最大值

import seaborn as sns
import matplotlib.pyplot as plt
def test(df):
 dfData = df.corr()
 plt.subplots(figsize=(9, 9)) # 设置画面大小
 sns.heatmap(dfData, annot=True, vmax=1, square=True, cmap="Blues")
 plt.savefig('./BluesStateRelation.png')
 plt.show()

补充知识:python混淆矩阵(confusion_matrix)FP、FN、TP、TN、ROC,精确率(Precision),召回率(Recall),准确率(Accuracy)详述与实现

一、FP、FN、TP、TN

你这蠢货,是不是又把酸葡萄和葡萄酸弄“混淆“”啦!!!

上面日常情况中的混淆就是:是否把某两件东西或者多件东西给弄混了,迷糊了。

在机器学习中, 混淆矩阵是一个误差矩阵, 常用来可视化地评估监督学习算法的性能.。混淆矩阵大小为 (n_classes, n_classes) 的方阵, 其中 n_classes 表示类的数量。

其中,这个矩阵的一行表示预测类中的实例(可以理解为模型预测输出,predict),另一列表示对该预测结果与标签(Ground Truth)进行判定模型的预测结果是否正确,正确为True,反之为False。

在机器学习中ground truth表示有监督学习的训练集的分类准确性,用于证明或者推翻某个假设。有监督的机器学习会对训练数据打标记,试想一下如果训练标记错误,那么将会对测试数据的预测产生影响,因此这里将那些正确打标记的数据成为ground truth。

此时,就引入FP、FN、TP、TN与精确率(Precision),召回率(Recall),准确率(Accuracy)。

以猫狗二分类为例,假定cat为正例-Positive,dog为负例-Negative;预测正确为True,反之为False。我们就可以得到下面这样一个表示FP、FN、TP、TN的表:

Python数据相关系数矩阵和热力图轻松实现教程

此时如下代码所示,其中scikit-learn 混淆矩阵函数 sklearn.metrics.confusion_matrix API 接口,可以用于绘制混淆矩阵

skearn.metrics.confusion_matrix(
 y_true, # array, Gound true (correct) target values
 y_pred, # array, Estimated targets as returned by a classifier
 labels=None, # array, List of labels to index the matrix.
 sample_weight=None # array-like of shape = [n_samples], Optional sample weights
)

完整示例代码如下:

__author__ = "lingjun"
# welcome to attention:小白CV
 
import seaborn as sns
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
sns.set()
 
f, (ax1,ax2) = plt.subplots(figsize = (10, 8),nrows=2)
y_true = ["dog", "dog", "dog", "cat", "cat", "cat", "cat"]
y_pred = ["cat", "cat", "dog", "cat", "cat", "cat", "cat"]
C2= confusion_matrix(y_true, y_pred, labels=["dog", "cat"])
print(C2)
print(C2.ravel())
sns.heatmap(C2,annot=True)
 
ax2.set_title('sns_heatmap_confusion_matrix')
ax2.set_xlabel('Pred')
ax2.set_ylabel('True')
f.savefig('sns_heatmap_confusion_matrix.jpg', bbox_inches='tight')

保存的图像如下所示:

Python数据相关系数矩阵和热力图轻松实现教程

这个时候我们还是不知道skearn.metrics.confusion_matrix做了些什么,这个时候print(C2),打印看下C2究竟里面包含着什么。最终的打印结果如下所示:

[[1 2]
 [0 4]]
[1 2 0 4]

解释下上面这几个数字的意思:

C2= confusion_matrix(y_true, y_pred, labels=["dog", "cat"])中的labels的顺序就分布是0、1,negative和positive

注:labels=[]可加可不加,不加情况下会自动识别,自己定义

cat为1-positive,其中真实值中cat有4个,4个被预测为cat,预测正确T,0个被预测为dog,预测错误F;

dog为0-negative,其中真实值中dog有3个,1个被预测为dog,预测正确T,2个被预测为cat,预测错误F。

所以:TN=1、 FP=2 、FN=0、TP=4。

TN=1:预测为negative狗中1个被预测正确了

FP=2 :预测为positive猫中2个被预测错误了

FN=0:预测为negative狗中0个被预测错误了

TP=4:预测为positive猫中4个被预测正确了

Python数据相关系数矩阵和热力图轻松实现教程

这时候再把上面猫狗预测结果拿来看看,6个被预测为cat,但是只有4个的true是cat,此时就和右侧的红圈对应上了。

y_pred = ["cat", "cat", "dog", "cat", "cat", "cat", "cat"]
y_true = ["dog", "dog", "dog", "cat", "cat", "cat", "cat"]

二、精确率(Precision),召回率(Recall),准确率(Accuracy)

有了上面的这些数值,就可以进行如下的计算工作了

准确率(Accuracy):这三个指标里最直观的就是准确率: 模型判断正确的数据(TP+TN)占总数据的比例

"Accuracy: "+str(round((tp+tn)/(tp+fp+fn+tn), 3))

召回率(Recall): 针对数据集中的所有正例label(TP+FN)而言,模型正确判断出的正例(TP)占数据集中所有正例的比例;FN表示被模型误认为是负例但实际是正例的数据;召回率也叫查全率,以物体检测为例,我们往往把图片中的物体作为正例,此时召回率高代表着模型可以找出图片中更多的物体!

"Recall: "+str(round((tp)/(tp+fn), 3))

精确率(Precision):针对模型判断出的所有正例(TP+FP)而言,其中真正例(TP)占的比例。精确率也叫查准率,还是以物体检测为例,精确率高表示模型检测出的物体中大部分确实是物体,只有少量不是物体的对象被当成物体。

"Precision: "+str(round((tp)/(tp+fp), 3))

还有:

("Sensitivity: "+str(round(tp/(tp+fn+0.01), 3)))
("Specificity: "+str(round(1-(fp/(fp+tn+0.01)), 3)))
("False positive rate: "+str(round(fp/(fp+tn+0.01), 3)))
("Positive predictive value: "+str(round(tp/(tp+fp+0.01), 3)))
("Negative predictive value: "+str(round(tn/(fn+tn+0.01), 3)))

三.绘制ROC曲线,及计算以上评价参数

如下为统计数据:

Python数据相关系数矩阵和热力图轻松实现教程

__author__ = "lingjun"
# E-mail: 1763469890@qq.com
 
from sklearn.metrics import roc_auc_score, confusion_matrix, roc_curve, auc
from matplotlib import pyplot as plt
import numpy as np
import torch
import csv
 
def confusion_matrix_roc(GT, PD, experiment, n_class):
 GT = GT.numpy()
 PD = PD.numpy()
 
 y_gt = np.argmax(GT, 1)
 y_gt = np.reshape(y_gt, [-1])
 y_pd = np.argmax(PD, 1)
 y_pd = np.reshape(y_pd, [-1])
 
 # ---- Confusion Matrix and Other Statistic Information ----
 if n_class > 2:
  c_matrix = confusion_matrix(y_gt, y_pd)
  # print("Confussion Matrix:\n", c_matrix)
  list_cfs_mtrx = c_matrix.tolist()
  # print("List", type(list_cfs_mtrx[0]))
 
  path_confusion = r"./records/" + experiment + "/confusion_matrix.txt"
  # np.savetxt(path_confusion, (c_matrix))
  np.savetxt(path_confusion, np.reshape(list_cfs_mtrx, -1), delimiter=',', fmt='%5s')
 
 if n_class == 2:
  list_cfs_mtrx = []
  tn, fp, fn, tp = confusion_matrix(y_gt, y_pd).ravel()
 
  list_cfs_mtrx.append("TN: " + str(tn))
  list_cfs_mtrx.append("FP: " + str(fp))
  list_cfs_mtrx.append("FN: " + str(fn))
  list_cfs_mtrx.append("TP: " + str(tp))
  list_cfs_mtrx.append(" ")
  list_cfs_mtrx.append("Accuracy: " + str(round((tp + tn) / (tp + fp + fn + tn), 3)))
  list_cfs_mtrx.append("Sensitivity: " + str(round(tp / (tp + fn + 0.01), 3)))
  list_cfs_mtrx.append("Specificity: " + str(round(1 - (fp / (fp + tn + 0.01)), 3)))
  list_cfs_mtrx.append("False positive rate: " + str(round(fp / (fp + tn + 0.01), 3)))
  list_cfs_mtrx.append("Positive predictive value: " + str(round(tp / (tp + fp + 0.01), 3)))
  list_cfs_mtrx.append("Negative predictive value: " + str(round(tn / (fn + tn + 0.01), 3)))
 
  path_confusion = r"./records/" + experiment + "/confusion_matrix.txt"
  np.savetxt(path_confusion, np.reshape(list_cfs_mtrx, -1), delimiter=',', fmt='%5s')
 
 # ---- ROC ----
 plt.figure(1)
 plt.figure(figsize=(6, 6))
 
 fpr, tpr, thresholds = roc_curve(GT[:, 1], PD[:, 1])
 roc_auc = auc(fpr, tpr)
 
 plt.plot(fpr, tpr, lw=1, label="ATB vs NotTB, area=%0.3f)" % (roc_auc))
 # plt.plot(thresholds, tpr, lw=1, label='Thr%d area=%0.2f)' % (1, roc_auc))
 # plt.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Luck')
 
 plt.xlim([0.00, 1.0])
 plt.ylim([0.00, 1.0])
 plt.xlabel("False Positive Rate")
 plt.ylabel("True Positive Rate")
 plt.title("ROC")
 plt.legend(loc="lower right")
 plt.savefig(r"./records/" + experiment + "/ROC.png")
 print("ok")
 
def inference():
 GT = torch.FloatTensor()
 PD = torch.FloatTensor()
 file = r"Sensitive_rename_inform.csv"
 with open(file, 'r', encoding='UTF-8') as f:
  reader = csv.DictReader(f)
  for row in reader:
   # TODO
   max_patient_score = float(row['ai1'])
   doctor_gt = row['gt2']
 
   print(max_patient_score,doctor_gt)
 
   pd = [[max_patient_score, 1-max_patient_score]]
   output_pd = torch.FloatTensor(pd).to(device)
 
   if doctor_gt == "+":
    target = [[1.0, 0.0]]
   else:
    target = [[0.0, 1.0]]
   target = torch.FloatTensor(target) # 类型转换, 将list转化为tensor, torch.FloatTensor([1,2])
   Target = torch.autograd.Variable(target).long().to(device)
 
   GT = torch.cat((GT, Target.float().cpu()), 0) # 在行上进行堆叠
   PD = torch.cat((PD, output_pd.float().cpu()), 0)
 
 confusion_matrix_roc(GT, PD, "ROC", 2)
 
if __name__ == "__main__":
 inference()

若是表格里面有中文,则记得这里进行修改,否则报错

with open(file, 'r') as f:

以上这篇Python数据相关系数矩阵和热力图轻松实现教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
分析python服务器拒绝服务攻击代码
Jan 16 Python
Python中super()函数简介及用法分享
Jul 11 Python
Python数据结构与算法之完全树与最小堆实例
Dec 13 Python
对python_discover方法遍历所有执行的用例详解
Feb 13 Python
Python实现队列的方法示例小结【数组,链表】
Feb 22 Python
Python通过Tesseract库实现文字识别
Mar 05 Python
sklearn线性逻辑回归和非线性逻辑回归的实现
Jun 09 Python
Python使用shutil模块实现文件拷贝
Jul 31 Python
python 中的9个实用技巧,助你提高开发效率
Aug 30 Python
pytorch MSELoss计算平均的实现方法
May 12 Python
python基础之类属性和实例属性
Oct 24 Python
python 远程执行命令的详细代码
Feb 15 Python
matplotlib.pyplot.matshow 矩阵可视化实例
Jun 16 #Python
使用python matploblib库绘制准确率,损失率折线图
Jun 16 #Python
为什么称python为胶水语言
Jun 16 #Python
在Keras中利用np.random.shuffle()打乱数据集实例
Jun 15 #Python
Python Socket TCP双端聊天功能实现过程详解
Jun 15 #Python
Python实现验证码识别
Jun 15 #Python
Python Tkinter图形工具使用方法及实例解析
Jun 15 #Python
You might like
最令PHP初学者头痛的十四个问题
2006/07/12 PHP
用ADODB来让PHP操作ACCESS数据库的方法
2006/12/31 PHP
php中unlink()、mkdir()、rmdir()等方法的使用介绍
2012/12/21 PHP
微信获取用户地理位置信息的原理与步骤
2015/11/12 PHP
PHP中字符串长度的截取用法示例
2017/01/12 PHP
PHP创建单例后台进程的方法示例
2017/05/23 PHP
showModelessDialog()使用详解
2006/09/21 Javascript
javascript form 验证函数 弹出对话框形式
2009/06/23 Javascript
JQuery 选择器、过滤器介绍
2011/02/14 Javascript
一段非常简单的js判断浏览器的内核
2014/08/17 Javascript
原生js制作简单的数字键盘
2015/04/24 Javascript
jQuery实现批量判断表单中文本框非空的方法(2种方法)
2015/12/09 Javascript
基于jquery实现轮播焦点图插件
2016/03/31 Javascript
JS实现异步上传压缩图片
2017/04/22 Javascript
vue.js中过滤器的使用教程
2017/06/08 Javascript
2种在vue项目中使用百度地图的简单方法
2018/09/28 Javascript
Vue.js组件实现选项卡以及切换特效
2019/07/24 Javascript
解决LayUI加上form.render()下拉框和单选以及复选框不出来的问题
2019/09/27 Javascript
浅谈vuex中store的命名空间
2019/11/08 Javascript
Vue 封装防刷新考试倒计时组件的实现
2020/06/05 Javascript
编写同时兼容Python2.x与Python3.x版本的代码的几个示例
2015/03/30 Python
Python实现简单的四则运算计算器
2016/11/02 Python
Python cookbook(数据结构与算法)将多个映射合并为单个映射的方法
2018/04/19 Python
对python中list的拷贝与numpy的array的拷贝详解
2019/01/29 Python
Pandas聚合运算和分组运算的实现示例
2019/10/17 Python
pycharm无法导入本地模块的解决方式
2020/02/12 Python
使用python创建生成动态链接库dll的方法
2020/05/09 Python
css3 给背景设置渐变色的方法
2019/09/12 HTML / CSS
html5调用摄像头功能的实现代码
2018/05/07 HTML / CSS
英国受欢迎的运动鞋和街头服装商店:Footasylum
2018/06/12 全球购物
Fenty Beauty官网:蕾哈娜创立的美妆品牌
2021/01/07 全球购物
监理资料员岗位职责
2014/01/03 职场文书
企业年度评优方案
2014/06/02 职场文书
孝老爱亲事迹材料
2014/12/24 职场文书
2015年建党94周年演讲稿
2015/03/19 职场文书
宪法宣传标语100条
2019/10/15 职场文书