感知器基础原理及python实现过程详解


Posted in Python onSeptember 30, 2019

简单版本,按照李航的《统计学习方法》的思路编写

感知器基础原理及python实现过程详解

数据采用了著名的sklearn自带的iries数据,最优化求解采用了SGD算法。

预处理增加了标准化操作。

'''
perceptron classifier

created on 2019.9.14
author: vince
'''
import pandas 
import numpy 
import logging
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

'''
perceptron classifier

Attributes
w: ld-array = weights after training
l: list = number of misclassification during each iteration 
'''
class Perceptron:
  def __init__(self, eta = 0.01, iter_num = 50, batch_size = 1):
    '''
    eta: float = learning rate (between 0.0 and 1.0).
    iter_num: int = iteration over the training dataset.
    batch_size: int = gradient descent batch number, 
      if batch_size == 1, used SGD; 
      if batch_size == 0, use BGD; 
      else MBGD;
    '''

    self.eta = eta;
    self.iter_num = iter_num;
    self.batch_size = batch_size;

  def train(self, X, Y):
    '''
    train training data.
    X:{array-like}, shape=[n_samples, n_features] = Training vectors, 
      where n_samples is the number of training samples and 
      n_features is the number of features.
    Y:{array-like}, share=[n_samples] = traget values.
    '''
    self.w = numpy.zeros(1 + X.shape[1]);
    self.l = numpy.zeros(self.iter_num);
    for iter_index in range(self.iter_num):
      for sample_index in range(X.shape[0]): 
        if (self.activation(X[sample_index]) != Y[sample_index]):
          logging.debug("%s: pred(%s), label(%s), %s, %s" % (sample_index, 
            self.net_input(X[sample_index]) , Y[sample_index],
            X[sample_index, 0], X[sample_index, 1]));
          self.l[iter_index] += 1;
      for sample_index in range(X.shape[0]): 
        if (self.activation(X[sample_index]) != Y[sample_index]):
          self.w[0] += self.eta * Y[sample_index];
          self.w[1:] += self.eta * numpy.dot(X[sample_index], Y[sample_index]);
          break;
      logging.info("iter %s: %s, %s, %s, %s" %
          (iter_index, self.w[0], self.w[1], self.w[2], self.l[iter_index]));

  def activation(self, x):
    return numpy.where(self.net_input(x) >= 0.0 , 1 , -1);

  def net_input(self, x): 
    return numpy.dot(x, self.w[1:]) + self.w[0];

  def predict(self, x):
    return self.activation(x);

def main():
  logging.basicConfig(level = logging.INFO,
      format = '%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',
      datefmt = '%a, %d %b %Y %H:%M:%S');

  iris = load_iris();

  features = iris.data[:99, [0, 2]];
  # normalization
  features_std = numpy.copy(features);
  for i in range(features.shape[1]):
    features_std[:, i] = (features_std[:, i] - features[:, i].mean()) / features[:, i].std();

  labels = numpy.where(iris.target[:99] == 0, -1, 1);

  # 2/3 data from training, 1/3 data for testing
  train_features, test_features, train_labels, test_labels = train_test_split(
      features_std, labels, test_size = 0.33, random_state = 23323);
  
  logging.info("train set shape:%s" % (str(train_features.shape)));

  p = Perceptron();

  p.train(train_features, train_labels);
    
  test_predict = numpy.array([]);
  for feature in test_features:
    predict_label = p.predict(feature);
    test_predict = numpy.append(test_predict, predict_label);

  score = accuracy_score(test_labels, test_predict);
  logging.info("The accruacy score is: %s "% (str(score)));

  #plot
  x_min, x_max = train_features[:, 0].min() - 1, train_features[:, 0].max() + 1;
  y_min, y_max = train_features[:, 1].min() - 1, train_features[:, 1].max() + 1;
  plt.xlim(x_min, x_max);
  plt.ylim(y_min, y_max);
  plt.xlabel("width");
  plt.ylabel("heigt");

  plt.scatter(train_features[:, 0], train_features[:, 1], c = train_labels, marker = 'o', s = 10);

  k = - p.w[1] / p.w[2];
  d = - p.w[0] / p.w[2];

  plt.plot([x_min, x_max], [k * x_min + d, k * x_max + d], "go-");

  plt.show();
  

if __name__ == "__main__":
  main();

感知器基础原理及python实现过程详解

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
以windows service方式运行Python程序的方法
Jun 03 Python
python实现线程池的方法
Jun 30 Python
详解Python的Flask框架中的signals信号机制
Jun 13 Python
详解如何使用Python编写vim插件
Nov 28 Python
python Opencv将图片转为字符画
Feb 19 Python
Python连接Mssql基础教程之Python库pymssql
Sep 16 Python
对python多线程中互斥锁Threading.Lock的简单应用详解
Jan 11 Python
python对象转字典的两种实现方式示例
Nov 07 Python
Django 允许局域网中的机器访问你的主机操作
May 13 Python
Python random模块的使用示例
Oct 10 Python
Pytorch数据读取之Dataset和DataLoader知识总结
May 23 Python
在 Python 中利用 Pool 进行多线程
Apr 24 Python
基于python的BP神经网络及异或实现过程解析
Sep 30 #Python
Window10下python3.7 安装与卸载教程图解
Sep 30 #Python
Python检查图片是否损坏及图片类型是否正确过程详解
Sep 30 #Python
Python3 合并二叉树的实现
Sep 30 #Python
自适应线性神经网络Adaline的python实现详解
Sep 30 #Python
softmax及python实现过程解析
Sep 30 #Python
python根据时间获取周数代码实例
Sep 30 #Python
You might like
php实现的双向队列类实例
2014/09/24 PHP
Centos6.5和Centos7 php环境搭建方法
2016/05/27 PHP
利用PHP访问MySql数据库的逻辑操作以及增删改查的实例讲解
2017/08/30 PHP
php简单计算权重的方法示例【适合抽奖类应用】
2019/06/10 PHP
详解强大的jQuery选择器之基本选择器、层次选择器
2012/02/07 Javascript
JS文本框不能输入空格验证方法
2013/03/19 Javascript
window.location.reload()方法刷新页面弹出要再次显示该网页对话框
2013/04/24 Javascript
JavaScript实现的SHA-1加密算法完整实例
2016/02/02 Javascript
BootStrap Table 设置height表头与内容无法对齐的问题
2016/12/28 Javascript
angular2倒计时组件使用详解
2017/01/12 Javascript
jQuery插件FusionCharts绘制2D环饼图效果示例【附demo源码】
2017/04/10 jQuery
利用JavaScript如何查询某个值是否数组内
2017/07/30 Javascript
vue移动端屏幕适配详解
2019/04/30 Javascript
解决layui轮播图有数据不显示的情况
2019/09/16 Javascript
vue源码中的检测方法的实现
2019/09/26 Javascript
jdk1.8+vue elementui实现多级菜单功能
2020/09/24 Javascript
python爬虫的数据库连接问题【推荐】
2018/06/25 Python
Django组件cookie与session的具体使用
2019/06/05 Python
wxPython绘图模块wxPyPlot实现数据可视化
2019/11/19 Python
Django配置文件代码说明
2019/12/04 Python
Pytorch中的VGG实现修改最后一层FC
2020/01/15 Python
python3连接mysql获取ansible动态inventory脚本
2020/01/19 Python
python requests包的request()函数中的参数-params和data的区别介绍
2020/05/05 Python
keras输出预测值和真实值方式
2020/06/27 Python
Web页面中八种创建多列等高(等高列布局)的实现技术
2012/12/24 HTML / CSS
html5 Canvas实现图片旋转的示例
2018/01/15 HTML / CSS
澳大利亚领先的在线葡萄酒零售商:Get Wines Direct
2018/03/27 全球购物
描述一下JVM加载class文件的原理机制
2013/12/08 面试题
超市促销实习自我鉴定
2013/09/23 职场文书
求职自荐信
2013/12/14 职场文书
音乐教师求职信
2014/06/28 职场文书
群众路线党员自我评议范文2014
2014/09/24 职场文书
幼儿园教师自我评价
2015/03/04 职场文书
基于Go Int转string几种方式性能测试
2021/04/28 Golang
根德5570型九灯四波段立体声收音机是电子管收音机的楷模 ? 再论5570
2022/04/05 无线电
Python可视化神器pyecharts之绘制箱形图
2022/07/07 Python