感知器基础原理及python实现过程详解


Posted in Python onSeptember 30, 2019

简单版本,按照李航的《统计学习方法》的思路编写

感知器基础原理及python实现过程详解

数据采用了著名的sklearn自带的iries数据,最优化求解采用了SGD算法。

预处理增加了标准化操作。

'''
perceptron classifier

created on 2019.9.14
author: vince
'''
import pandas 
import numpy 
import logging
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

'''
perceptron classifier

Attributes
w: ld-array = weights after training
l: list = number of misclassification during each iteration 
'''
class Perceptron:
  def __init__(self, eta = 0.01, iter_num = 50, batch_size = 1):
    '''
    eta: float = learning rate (between 0.0 and 1.0).
    iter_num: int = iteration over the training dataset.
    batch_size: int = gradient descent batch number, 
      if batch_size == 1, used SGD; 
      if batch_size == 0, use BGD; 
      else MBGD;
    '''

    self.eta = eta;
    self.iter_num = iter_num;
    self.batch_size = batch_size;

  def train(self, X, Y):
    '''
    train training data.
    X:{array-like}, shape=[n_samples, n_features] = Training vectors, 
      where n_samples is the number of training samples and 
      n_features is the number of features.
    Y:{array-like}, share=[n_samples] = traget values.
    '''
    self.w = numpy.zeros(1 + X.shape[1]);
    self.l = numpy.zeros(self.iter_num);
    for iter_index in range(self.iter_num):
      for sample_index in range(X.shape[0]): 
        if (self.activation(X[sample_index]) != Y[sample_index]):
          logging.debug("%s: pred(%s), label(%s), %s, %s" % (sample_index, 
            self.net_input(X[sample_index]) , Y[sample_index],
            X[sample_index, 0], X[sample_index, 1]));
          self.l[iter_index] += 1;
      for sample_index in range(X.shape[0]): 
        if (self.activation(X[sample_index]) != Y[sample_index]):
          self.w[0] += self.eta * Y[sample_index];
          self.w[1:] += self.eta * numpy.dot(X[sample_index], Y[sample_index]);
          break;
      logging.info("iter %s: %s, %s, %s, %s" %
          (iter_index, self.w[0], self.w[1], self.w[2], self.l[iter_index]));

  def activation(self, x):
    return numpy.where(self.net_input(x) >= 0.0 , 1 , -1);

  def net_input(self, x): 
    return numpy.dot(x, self.w[1:]) + self.w[0];

  def predict(self, x):
    return self.activation(x);

def main():
  logging.basicConfig(level = logging.INFO,
      format = '%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',
      datefmt = '%a, %d %b %Y %H:%M:%S');

  iris = load_iris();

  features = iris.data[:99, [0, 2]];
  # normalization
  features_std = numpy.copy(features);
  for i in range(features.shape[1]):
    features_std[:, i] = (features_std[:, i] - features[:, i].mean()) / features[:, i].std();

  labels = numpy.where(iris.target[:99] == 0, -1, 1);

  # 2/3 data from training, 1/3 data for testing
  train_features, test_features, train_labels, test_labels = train_test_split(
      features_std, labels, test_size = 0.33, random_state = 23323);
  
  logging.info("train set shape:%s" % (str(train_features.shape)));

  p = Perceptron();

  p.train(train_features, train_labels);
    
  test_predict = numpy.array([]);
  for feature in test_features:
    predict_label = p.predict(feature);
    test_predict = numpy.append(test_predict, predict_label);

  score = accuracy_score(test_labels, test_predict);
  logging.info("The accruacy score is: %s "% (str(score)));

  #plot
  x_min, x_max = train_features[:, 0].min() - 1, train_features[:, 0].max() + 1;
  y_min, y_max = train_features[:, 1].min() - 1, train_features[:, 1].max() + 1;
  plt.xlim(x_min, x_max);
  plt.ylim(y_min, y_max);
  plt.xlabel("width");
  plt.ylabel("heigt");

  plt.scatter(train_features[:, 0], train_features[:, 1], c = train_labels, marker = 'o', s = 10);

  k = - p.w[1] / p.w[2];
  d = - p.w[0] / p.w[2];

  plt.plot([x_min, x_max], [k * x_min + d, k * x_max + d], "go-");

  plt.show();
  

if __name__ == "__main__":
  main();

感知器基础原理及python实现过程详解

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python异常学习笔记
Feb 03 Python
Python利用前序和中序遍历结果重建二叉树的方法
Apr 27 Python
Python探索之pLSA实现代码
Oct 25 Python
PyQt5 实现字体大小自适应分辨率的方法
Jun 18 Python
使用Python画股票的K线图的方法步骤
Jun 28 Python
Python 转换RGB颜色值的示例代码
Oct 13 Python
Python 3 使用Pillow生成漂亮的分形树图片
Dec 24 Python
pyinstaller还原python代码过程图解
Jan 08 Python
pyinstaller 3.6版本通过pip安装失败的解决办法(推荐)
Jan 18 Python
python 对任意数据和曲线进行拟合并求出函数表达式的三种解决方案
Feb 18 Python
Pycharm的Available Packages为空的解决方法
Sep 18 Python
python tqdm实现进度条的示例代码
Nov 10 Python
基于python的BP神经网络及异或实现过程解析
Sep 30 #Python
Window10下python3.7 安装与卸载教程图解
Sep 30 #Python
Python检查图片是否损坏及图片类型是否正确过程详解
Sep 30 #Python
Python3 合并二叉树的实现
Sep 30 #Python
自适应线性神经网络Adaline的python实现详解
Sep 30 #Python
softmax及python实现过程解析
Sep 30 #Python
python根据时间获取周数代码实例
Sep 30 #Python
You might like
PHP与MySQL交互使用详解
2006/10/09 PHP
PHP的FTP学习(四)
2006/10/09 PHP
php简单对象与数组的转换函数代码(php多层数组和对象的转换)
2011/05/18 PHP
php 广告调用类代码(支持Flash调用)
2011/08/11 PHP
深入解析PHP垃圾回收机制对内存泄露的处理
2013/06/14 PHP
php5.2的curl-bug 服务器被php进程卡死问题排查
2016/09/19 PHP
mongodb和php的用法详解
2019/03/25 PHP
Apache站点配置SSL强制跳转443
2021/03/09 Servers
jQuery 页面 Mask实现代码
2010/01/09 Javascript
用简洁的jQuery方法toggleClass实现隔行换色
2014/10/22 Javascript
JavaScript中的object转换成number或string规则介绍
2014/12/31 Javascript
jquery+CSS实现的多级竖向展开树形TRee菜单效果
2015/08/24 Javascript
js实现的简洁网页滑动tab菜单效果代码
2015/08/24 Javascript
分享一些常用的jQuery动画事件和动画函数
2015/11/27 Javascript
jQuery实现滚动鼠标放大缩小图片的方法(附demo源码下载)
2016/03/05 Javascript
使用Promise解决多层异步调用的简单学习心得
2016/05/17 Javascript
Angularjs中的页面访问权限怎么设置
2016/11/11 Javascript
Vue-cli 使用json server在本地模拟请求数据的示例代码
2017/11/02 Javascript
浅谈vue2 单页面如何设置网页title
2017/11/08 Javascript
VUE在for循环里面根据内容值动态的加入class值的方法
2018/08/12 Javascript
Nodejs对postgresql基本操作的封装方法
2019/02/20 NodeJs
JavaScript canvas绘制折线图
2020/02/18 Javascript
vue项目中使用rem,在入口文件添加内容操作
2020/11/11 Javascript
python实现ipsec开权限实例
2014/11/11 Python
快速查询Python文档方法分享
2017/12/27 Python
Python发送http请求解析返回json的实例
2018/03/26 Python
Python3爬虫关于代理池的维护详解
2020/07/30 Python
html5中为audio标签增加停止按钮动作实现方法
2013/01/04 HTML / CSS
阿里云:Aliyun.com
2017/02/15 全球购物
美国在线家居装饰店:Belle&June
2018/10/24 全球购物
Delphi笔试题
2016/11/14 面试题
教师自我鉴定范文
2014/03/20 职场文书
2015年“七七卢沟桥事变”纪念活动总结
2015/03/24 职场文书
药品销售员2015年终工作总结
2015/10/22 职场文书
Redis安装使用RedisJSON模块的方法
2022/03/23 Redis
Nginx如何获取自定义请求header头和URL参数详解
2022/07/23 Servers