Python 数据可视化神器Pyecharts绘制图像练习


Posted in Python onFebruary 28, 2022

前言:

Echarts 是百度开源的一款数据可视化 JS 工具,数据可视化类型十分丰富,但是得通过导入 js 库在 Java Web 项目上运行。

作为工作中常用 Python 的选手,不能不知道这款数据可视化插件的强大。那么,能否在 Python 中也能用到 Echarts 的功能呢?寻找中惊喜地发现了 pyecharts,只需在python中安装该模块即可使用。

安装:

常用的pip安装包一键安装pyecharts

 pyecharts安装命令:

ython -m pip install pyecharts

Python + pyecharts具体应用

结合工作中的项目数据,我选择了 test 项目需求中 hotel_code_new 为 CNSZVS_002,CWSWS_003 对应2019年12个月指标为 RNs 的数据做可视化展示与分析。

1.Hive数据库查询sql

hive_sql内容如下:

# sql中所使用的部分语法为hive sql中常规的语法,与mysql有所不同,请注意。
select rrrd1.hotel_code_new as hotel_code_new
      ,dda.natural_date as natural_date
      ,nvl(rrrd.room_nights, 0) as room_nights
 from ( select distinct substr(natural_dt,1,7) as natural_date 
    from dws.dws_test_date_calendar
    where dt_year='2019'
        )dda
        left join 
         (select 'CNSZVS_002' hotel_code_new
            UNION all select  'CWSWS_003' hotel_code_new
      )rrrd1
        left join
         (select  hotel_code_new
                    ,substr(stay_date,1,7) as stay_date
                    ,sum(number_of_room_nights) as room_nights
                from dwm.dwm_test_resvs_rom_daily_df
                where dt='2021-10-24'
                and hotel_code_new in(CNSZVS_002', 'CWSWS_003')
                    and resv_status in('CHECKEDSSSIN','CHECKEDSSSOUT')
                    and substr(stay_date,0,4) = '2019' 
                    group by hotel_code_new,substr(stay_date,1,7)
        )rrrd 
        on dda.natural_date = rrrd.stay_date 
        and rrrd1.hotel_code_new=rrrd.hotel_code_new
        order by rrrd.hotel_code_new;

2.Python代码实现—柱状图

from impala.dbapi import connect
import warnings

#数据仓库数据获取准备
def hive_connect(sql):
    warnings.filterwarnings('ignore')
    config_hive_beta = {
        'host': '10.7.0.12',  #hive的host地址
        'port': 10000,    #hive的端口号
        'user': 'hive',    #hive的username
        'password': 'hive',    #hive的password
        'database': 'tmp',     #hive中需要查询的数据库名
        'auth_mechanism': 'PLAIN' #hive的hive-site.xml配置文件中获取
    }
    conn = connect(**config_hive_beta)
    cursor = conn.cursor()
    cursor.execute(sql)
    hive_all_data = cursor.fetchall()
    return hive_all_data


# all_data = hive_connect(hive_sql)
# 通过调用hive_connect方法获取到的数据库查询结果数据如all_data列表所示
all_data = [('CNSZVS_002', '2019-01', 0), ('CNSZVS_002', '2019-02', 0), ('CNSZVS_002', '2019-03', 0),
            ('CNSZVS_002', '2019-04', 0), ('CNSZVS_002', '2019-05', 0), ('CNSZVS_002', '2019-06', 2353),
            ('CNSZVS_002', '2019-07', 2939), ('CNSZVS_002', '2019-08', 5148), ('CNSZVS_002', '2019-09', 3850),
            ('CNSZVS_002', '2019-10', 4973), ('CNSZVS_002', '2019-11', 5467), ('CNSZVS_002', '2019-12', 4742),
            ('CWSWS_003', '2019-01', 5914), ('CWSWS_003', '2019-02', 4434), ('CWSWS_003', '2019-03', 6003),
            ('CWSWS_003', '2019-04', 6611), ('CWSWS_003', '2019-05', 6586), ('CWSWS_003', '2019-06', 5840),
            ('CWSWS_003', '2019-07', 6624), ('CWSWS_003', '2019-08', 7001), ('CWSWS_003', '2019-09', 5792),
            ('CWSWS_003', '2019-10', 6898), ('CWSWS_003', '2019-11', 6944), ('CWSWS_003', '2019-12', 5404)]

# 从pyecharts模块导入柱状图-Bar
from pyecharts import Bar
# 设置横轴行名,这里使用12个月份的英文简称
columns = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
# 分别新建2个空list用于存储每个月份对应的RNs的值
CNSZVS_002 = []
CWSWS_003 = []

for i in all_data:
    if i[0] == 'CNSZVS_002':
        CNSZVS_002.append(i[2])
    elif i[0] == 'CWSWS_003':
        CWSWS_003.append(i[2])
    else:
        pass
# 设置柱状图的主标题与副标题
bar = Bar("柱状图", "Test需求—2019年的RNs")
# 添加柱状图的数据及配置项-求平均值、最大值、最小值
bar.add("CNSZVS_002", columns, CNSZVS_002, mark_line=["average"], mark_point=["max", "min"])
bar.add("CWSWS_003", columns, CWSWS_003, mark_line=["average"], mark_point=["max", "min"])
# 在本py文件同级目录下生成名为render.html的本地文件(默认为.html文件)
bar.render()
# 也可设置成指定的路径用于保存html文件
#bar.render(r"D:bar_render.html")

柱状效果图展示:

Python 数据可视化神器Pyecharts绘制图像练习

生成的柱状效果图是html格式的,可以在浏览器中打开查看,在浏览器中支持下载成图片格式到本地,并且点击图例即可置灰对应的图例,同时隐藏图例对应的柱状图数据,

如下图所示:

Python 数据可视化神器Pyecharts绘制图像练习

3.Python代码实现—饼状图

注意:数据准备部分的代码与柱状图一样,这里只展示饼状图特有的代码

# 从pyecharts模块中导入饼图Pie
from pyecharts import Pie
# 设置主标题与副标题,标题设置居中,设置宽度为1000
pie = Pie("饼状图", "Test需求—2019年的RNs", title_pos='left', width=1000)
# 使用add导入数据,设置坐标位置为【20,50】,上方的colums选项取消显示
pie.add("CNSZVS_002", columns, CNSZVS_002, center=[20, 50], is_legend_show=True)
# 使用add导入数据,设置坐标位置为【75,50】,上方的colums选项正常显示
pie.add("CWSWS_003", columns, CWSWS_003, center=[75, 50], is_legend_show=False, is_label_show=True)
# 保存图表
pie.render()

饼状效果图展示——隐藏所占百分比

Python 数据可视化神器Pyecharts绘制图像练习

饼状效果图展示——展示所占百分比

Python 数据可视化神器Pyecharts绘制图像练习

4.Python代码实现—箱型图

# 从pyecharts模块导入箱型图Boxplot
from pyecharts import Boxplot
boxplot = Boxplot("箱型图", "Test需求—2019年的RNs")
x_axis = ['CNSZVS_002', 'CWSWS_003']
y_axis = [CNSZVS_002, CWSWS_003]
# prepare_data方法可以将数据转为嵌套的 [min, Q1, median (or Q2), Q3, max]
yaxis = boxplot.prepare_data(y_axis)
boxplot.add("2019年RNs统计", x_axis, yaxis)
boxplot.render()

箱型图效果展示:

Python 数据可视化神器Pyecharts绘制图像练习

5.Python代码实现—折线图

from pyecharts import Line
line = Line("折线图", "Test需求—2019年的RNs")
# is_label_show属性是设置上方数据是否显示
line.add("CNSZVS_002", columns, CNSZVS_002, is_label_show=True)
line.add("CWSWS_003", columns, CWSWS_003, is_label_show=True)
line.render()

折线图效果展示:

Python 数据可视化神器Pyecharts绘制图像练习

6.Python代码实现—雷达图

from pyecharts import Radar
radar = Radar("雷达图", "Test需求—2019年的RNs")
# 由于雷达图传入的数据得为多维数据,需要将list再进行list转换一次
CNSZVS_002 = [CNSZVS_002]
CWSWS_003 = [CWSWS_003]
# 设置column的最大值,为了雷达图更为直观,这里的月份最大值设置依据真实数据的值来设置,因此各个月份有所不同
schema_diff = [
    ("Jan", 7000), ("Feb", 5000), ("Mar", 6500),
    ("Apr", 7000), ("May", 7000), ("Jun", 6200),
    ("Jul", 6800), ("Aug", 7200), ("Sep", 6000),
    ("Oct", 7300), ("Nov", 7500), ("Dec", 6000)
]
# 传入坐标
radar.config(schema_diff)
radar.add("CNSZVS_002", CNSZVS_002)
# 一般默认为同一种颜色,这里为了便于区分,需要设置item的颜色
radar.add("CWSWS_003", CWSWS_003, item_color="#1C86EE")
radar.render()

雷达效果图展示:

Python 数据可视化神器Pyecharts绘制图像练习

7.Python代码实现—散点图

from pyecharts import Scatter
scatter = Scatter("散点图", "Test需求—2019年的RNs")
# xais_name是设置横坐标名称,这里由于显示问题,还需要将y轴名称与y轴的距离进行设置
scatter.add("CWSWS_003&CNSZVS_002 RNs的散点分布", CNSZVS_002, CWSWS_003, xaxis_name="CNSZVS_002", yaxis_name="CWSWS_003", yaxis_name_gap=40)
scatter.render()

散点图效果展示:

Python 数据可视化神器Pyecharts绘制图像练习

总结:

  • 准备符合要求的数据及其格式
  • 导入对应图表所使用的包
  • add()方法:主要方法,用于添加图表的数据和设置各种配置项
  • render()方法:用于保存生成的图表

 到此这篇关于Python 数据可视化神器Pyecharts绘制图像练习的文章就介绍到这了,更多相关Python 数据可视化神器Pyecharts内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python向日志输出中添加上下文信息
May 24 Python
python 多维切片之冒号和三个点的用法介绍
Apr 19 Python
Python使用pyautogui模块实现自动化鼠标和键盘操作示例
Sep 04 Python
在python中将字符串转为json对象并取值的方法
Dec 31 Python
python实现图像检索的三种(直方图/OpenCV/哈希法)
Aug 08 Python
Python MongoDB 插入数据时已存在则不执行,不存在则插入的解决方法
Sep 24 Python
Python 内置函数globals()和locals()对比详解
Dec 23 Python
pytorch模型存储的2种实现方法
Feb 14 Python
python爬虫开发之使用python爬虫库requests,urllib与今日头条搜索功能爬取搜索内容实例
Mar 10 Python
python中读入二维csv格式的表格方法详解(以元组/列表形式表示)
Apr 24 Python
Python函数递归调用实现原理实例解析
Aug 11 Python
Python数据可视化之用Matplotlib绘制常用图形
Jun 03 Python
Python使用OpenCV实现虚拟缩放效果
python保存图片的四个常用方法
Python可视化学习之seaborn调色盘
Python可视化学习之matplotlib内置单颜色
Python可视化学习之seaborn绘制矩阵图详解
Python matplotlib可视化之绘制韦恩图
Python语言中的数据类型-序列
Feb 24 #Python
You might like
PHP中mysql_field_type()函数用法
2014/11/24 PHP
php实现表单多按钮提交action的处理方法
2015/10/24 PHP
总结的一些PHP开发中的tips(必看篇)
2017/03/24 PHP
PHP4和PHP5版本下解析XML文档的操作方法实例分析
2017/05/20 PHP
jQuery使用手册之三 CSS操作
2007/03/24 Javascript
解决AJAX中跨域访问出现'没有权限'的错误
2008/08/20 Javascript
JS 无法通过W3C验证的处理方法
2010/03/09 Javascript
Jquery实现鼠标移上弹出提示框、移出消失思路及代码
2013/05/19 Javascript
用jQuery与JSONP轻松解决跨域访问的问题
2014/02/04 Javascript
Javascript前端UI框架Kit使用指南之Kitjs简介
2014/11/28 Javascript
JS仿Windows开机启动Loading进度条的方法
2015/02/26 Javascript
AngularJS ng-bind-template 指令详解
2016/07/30 Javascript
JS封装通过className获取元素的函数示例
2016/12/20 Javascript
微信小程序 解决swiper不显示图片的方法
2017/01/04 Javascript
Javascript仿京东放大镜的效果
2017/03/01 Javascript
jquery实现倒计时小应用
2017/09/19 jQuery
3种vue路由传参的基本模式
2018/02/22 Javascript
关于Mac下安装nodejs、npm和cnpm的教程
2018/04/11 NodeJs
[01:32:10]NAVI vs VG Supermajor 败者组 BO3 第一场 6.5
2018/06/06 DOTA
[35:29]Secret vs VG 2018国际邀请赛淘汰赛BO3 第三场 8.23
2018/08/24 DOTA
[01:02:20]Mineski vs TNC 2019国际邀请赛小组赛 BO2 第二场 8.15
2019/08/16 DOTA
python实现网页链接提取的方法分享
2014/02/25 Python
python中pandas.DataFrame的简单操作方法(创建、索引、增添与删除)
2017/03/12 Python
基于python实现文件加密功能
2020/01/06 Python
Tensorflow限制CPU个数实例
2020/02/06 Python
Jupyter notebook如何修改平台字体
2020/05/13 Python
System.Array.CopyTo()和System.Array.Clone()有什么区别
2016/06/20 面试题
关于幼儿的自我评价
2013/12/18 职场文书
骨干教师培训感言
2014/01/16 职场文书
美容院考勤制度
2014/01/30 职场文书
银行职员自我鉴定
2014/04/20 职场文书
八年级上册语文教学计划
2015/01/22 职场文书
2016年寒假社会实践活动总结
2015/03/27 职场文书
员工福利申请报告
2015/05/15 职场文书
教师读书笔记
2015/06/29 职场文书
Python基础知识学习之类的继承
2021/05/31 Python