Python可视化学习之seaborn绘制矩阵图详解


Posted in Python onFebruary 24, 2022

本文内容速览

Python可视化学习之seaborn绘制矩阵图详解

Python可视化学习之seaborn绘制矩阵图详解

1、绘图数据准备

还是使用鸢尾花iris数据集

#导入本帖要用到的库,声明如下:
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
from sklearn import datasets
import seaborn as sns
 
#导入鸢尾花iris数据集(方法一)
#该方法更有助于理解数据集
iris=datasets.load_iris()
x, y =iris.data,iris.target
y_1 = np.array(['setosa' if i==0 else 'versicolor' if i==1 else 'virginica' for i in y])
pd_iris = pd.DataFrame(np.hstack((x, y_1.reshape(150,1))),columns=['sepal length(cm)','sepal width(cm)','petal length(cm)','petal width(cm)','class'])
 
#astype修改pd_iris中数据类型object为float64
pd_iris['sepal length(cm)']=pd_iris['sepal length(cm)'].astype('float64')
pd_iris['sepal width(cm)']=pd_iris['sepal width(cm)'].astype('float64')
pd_iris['petal length(cm)']=pd_iris['petal length(cm)'].astype('float64')
pd_iris['petal width(cm)']=pd_iris['petal width(cm)'].astype('float64')
 
 
#导入鸢尾花iris数据集(方法二)
#import seaborn as sns
#iris_sns = sns.load_dataset("iris")

数据集简单统计

Python可视化学习之seaborn绘制矩阵图详解

2、seaborn.pairplot

语法:seaborn.pairplot(data, hue=None, hue_order=None, palette=None, vars=None, x_vars=None, y_vars=None, kind='scatter', diag_kind='auto', markers=None, height=2.5, aspect=1, corner=False, dropna=True, plot_kws=None, diag_kws=None, grid_kws=None, size=None)

g = sns.pairplot(pd_iris)
g.fig.set_size_inches(12,12)#figure大小
sns.set(style='whitegrid',font_scale=1.5)#文本大小

Python可视化学习之seaborn绘制矩阵图详解

对角线4张图是变量自身的分布直方图;

非对角线的 12 张就是某个变量和另一个变量的关系。

加上分类变量

g = sns.pairplot(pd_iris,
                 hue='class'#按照三种花分类
                )
sns.set(style='whitegrid')
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

修改调色盘

可以使用Matplotlib、seaborn、颜色号list等色盘。

可参考:Python可视化学习之seaborn调色盘

import palettable 
g = sns.pairplot(pd_iris,
                 hue='class',
                 palette=palettable.cartocolors.qualitative.Bold_9.mpl_colors,#palettable颜色盘
                
                )
sns.set(style='whitegrid')
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

g = sns.pairplot(pd_iris,
                 hue='class',
                palette='Set1',#Matplotlib颜色
                
                )
sns.set(style='whitegrid')
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

g = sns.pairplot(pd_iris,
                 hue='class',
                palette=['#dc2624', '#2b4750', '#45a0a2'],#使用传入的颜色list
                
                )
sns.set(style='whitegrid')
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

x,y轴方向选取相同子集 

import palettable
g = sns.pairplot(pd_iris,
                 hue='class',
                 palette=palettable.cartocolors.qualitative.Bold_9.mpl_colors,
                 vars=['sepal length(cm)','sepal width(cm)'],#x,y轴方向选取相同子集绘图
                
                )
sns.set(style='whitegrid')
g.fig.set_size_inches(12,6)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

x,y轴方向选取不同子集

import palettable
g = sns.pairplot(pd_iris,
                 hue='class',
                 palette=palettable.cartocolors.qualitative.Bold_9.mpl_colors,
                 x_vars=['sepal length(cm)','sepal width(cm)'],#x,y轴方向选取不同子集
                 y_vars=['petal length(cm)','petal width(cm)'],
                
                )
sns.set(style='whitegrid')
g.fig.set_size_inches(12,6)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

非对角线散点图加趋势线 

import palettable
g = sns.pairplot(pd_iris,
                 hue='class',
                 palette=palettable.cartocolors.qualitative.Bold_9.mpl_colors,
                 kind='reg',#默认为scatter,reg加上趋势线                 
                
                )
sns.set(style='whitegrid')
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

对角线上的四个图绘制方式

可选参数为‘auto’, ‘hist’(默认), ‘kde’, None。

import palettable
g = sns.pairplot(pd_iris,
                 hue='class',
                 palette=palettable.cartocolors.qualitative.Bold_9.mpl_colors,
                 diag_kind='hist',#hist直方图               
                
                )
sns.set(style='whitegrid')
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

只显示网格下三角图形 

import palettable
g = sns.pairplot(pd_iris,
                 hue='class',
                 palette='Set1',
                 corner=True#图形显示左下角
                
                )
 
g.fig.set_size_inches(12,12)
sns.set(font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

图形外观设置 

import palettable
g = sns.pairplot(pd_iris,
                 hue='class',
                 palette='Set1',
                 markers=['$\clubsuit$','.','+'],#散点图的marker
                 plot_kws=dict(s=50, edgecolor="r", linewidth=1),#非对角线上的图marker大小、外框、外框线宽
                 diag_kws=dict(shade=True)#对角线上核密度图是否填充
                 
                
                )
g.fig.set_size_inches(12,12)
sns.set(font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

3、seaborn.PairGrid(更灵活的绘制矩阵图)

seaborn.PairGrid(data, hue=None, hue_order=None, palette=None, hue_kws=None, vars=None, x_vars=None, y_vars=None, corner=False, diag_sharey=True, height=2.5, aspect=1, layout_pad=0, despine=True, dropna=True, size=None)

每个子图绘制同类型的图

g = sns.PairGrid(pd_iris, 
                 hue='class',
                 palette='husl',)
g = g.map(plt.scatter)#map每个子图绘制一样类型的图
g = g.add_legend()
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

对角线和非对角线分别绘制不同类型图

g = sns.PairGrid(pd_iris, 
                 hue='class',
                palette='Set1',)
g = g.map_diag(plt.hist)#对角线绘制直方图
g = g.map_offdiag(plt.scatter)#非对角线绘制散点图
g = g.add_legend()
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

对角线上方、对角线、对角线下方分别绘制不同类型图

g = sns.PairGrid(pd_iris, hue='class',)
g = g.map_upper(sns.scatterplot)
g = g.map_lower(sns.kdeplot, colors="C0")
g = g.map_diag(sns.kdeplot, lw=2)3绘制核密度图
g = g.add_legend()#添加图例
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

其它一些参数修改

g = sns.PairGrid(pd_iris, hue='class',
                 palette='Set1',
                 hue_kws={"marker": ["^", "s", "D"]},#设置marker
                 diag_sharey=False,
                )
g = g.map_upper(sns.scatterplot,edgecolor="w", s=40)#设置点大小,外框颜色
g = g.map_lower(sns.kdeplot, colors="#01a2d9")#设置下三角图形颜色
g = g.map_diag(sns.kdeplot, lw=3)#对角图形颜色
g = g.add_legend()#添加图例
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

以上就是Python可视化学习之seaborn绘制矩阵图详解的详细内容,更多关于Python seaborn矩阵图的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
python实现批量获取指定文件夹下的所有文件的厂商信息
Sep 28 Python
Python中super的用法实例
May 28 Python
Python编程判断一个正整数是否为素数的方法
Apr 14 Python
python基础之入门必看操作
Jul 26 Python
基于Django的ModelForm组件(详解)
Dec 07 Python
Python读取视频的两种方法(imageio和cv2)
Apr 15 Python
python机器学习库scikit-learn:SVR的基本应用
Jun 26 Python
Pandas_cum累积计算和rolling滚动计算的用法详解
Jul 04 Python
Python 内置函数globals()和locals()对比详解
Dec 23 Python
python实现扫雷游戏
Mar 03 Python
小 200 行 Python 代码制作一个换脸程序
May 12 Python
Pandas读取csv时如何设置列名
Jun 02 Python
Python matplotlib可视化之绘制韦恩图
Python语言中的数据类型-序列
Feb 24 #Python
浅析python中特殊文件和特殊函数
Feb 24 #Python
Python中字符串对象语法分享
Feb 24 #Python
Python+Matplotlib+LaTeX玩转数学公式
Python语言内置数据类型
Feb 24 #Python
Python中的程序流程控制语句
Feb 24 #Python
You might like
PHP中调用JAVA
2006/10/09 PHP
php使用高斯算法实现图片的模糊处理功能示例
2016/11/11 PHP
php使用Jpgraph创建柱状图展示年度收支表效果示例
2017/02/15 PHP
php unlink()函数使用教程
2018/07/12 PHP
YII2框架使用控制台命令的方法分析
2020/03/18 PHP
详解phpstorm2020最新破解方法
2020/09/17 PHP
某页码显示的helper 少量调整,另附js版
2010/09/12 Javascript
JavaScript 在网页上单击鼠标的地方显示层及关闭层
2012/12/30 Javascript
jquery属性选择器not has怎么写 行悬停高亮显示
2013/11/13 Javascript
利用Keydown事件阻止用户输入实现代码
2014/03/11 Javascript
当滚动条滚动到页面底部自动加载增加内容的js代码
2014/05/13 Javascript
如何调试异步加载页面里包含的js文件
2014/10/30 Javascript
node.js中的fs.lchmodSync方法使用说明
2014/12/16 Javascript
javascript实现无缝上下滚动特效
2015/12/16 Javascript
Vue input控件通过value绑定动态属性及修饰符的方法
2017/05/03 Javascript
详解基于vue-cli优化的webpack配置
2017/11/06 Javascript
详解使用vue-admin-template的优化历程
2018/05/20 Javascript
手挽手带你学React之React-router4.x的使用
2019/02/14 Javascript
javascript触发模拟鼠标点击事件
2019/06/26 Javascript
[07:12]2014DOTA2西雅图国际邀请赛 黑马Liquid专题采访
2014/07/12 DOTA
Python文件与文件夹常见基本操作总结
2016/09/19 Python
python 3利用Dlib 19.7实现摄像头人脸检测特征点标定
2018/02/26 Python
python使用response.read()接收json数据的实例
2018/12/19 Python
python实现接口并发测试脚本
2019/06/25 Python
Django实现auth模块下的登录注册与注销功能
2019/10/10 Python
python中的Elasticsearch操作汇总
2019/10/30 Python
如何在python中写hive脚本
2019/11/08 Python
python3 实现函数写文件路径的正确方法
2019/11/27 Python
Anaconda的安装与虚拟环境建立
2020/11/18 Python
Python操作Excel的学习笔记
2021/02/18 Python
HTML5的Geolocation地理位置定位API使用教程
2016/05/12 HTML / CSS
全球知名的婚恋交友网站:Match.com
2017/01/05 全球购物
狗狗玩具、零食和咀嚼物的月度送货服务:Super Chewer
2018/08/22 全球购物
2016高考寄语或鼓励的话语
2015/12/04 职场文书
盘点2020年适合农村地区创业的项目
2019/10/16 职场文书
MYSQL 无法识别中文的永久解决方法
2021/06/03 MySQL