Python可视化学习之seaborn绘制矩阵图详解


Posted in Python onFebruary 24, 2022

本文内容速览

Python可视化学习之seaborn绘制矩阵图详解

Python可视化学习之seaborn绘制矩阵图详解

1、绘图数据准备

还是使用鸢尾花iris数据集

#导入本帖要用到的库,声明如下:
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
from sklearn import datasets
import seaborn as sns
 
#导入鸢尾花iris数据集(方法一)
#该方法更有助于理解数据集
iris=datasets.load_iris()
x, y =iris.data,iris.target
y_1 = np.array(['setosa' if i==0 else 'versicolor' if i==1 else 'virginica' for i in y])
pd_iris = pd.DataFrame(np.hstack((x, y_1.reshape(150,1))),columns=['sepal length(cm)','sepal width(cm)','petal length(cm)','petal width(cm)','class'])
 
#astype修改pd_iris中数据类型object为float64
pd_iris['sepal length(cm)']=pd_iris['sepal length(cm)'].astype('float64')
pd_iris['sepal width(cm)']=pd_iris['sepal width(cm)'].astype('float64')
pd_iris['petal length(cm)']=pd_iris['petal length(cm)'].astype('float64')
pd_iris['petal width(cm)']=pd_iris['petal width(cm)'].astype('float64')
 
 
#导入鸢尾花iris数据集(方法二)
#import seaborn as sns
#iris_sns = sns.load_dataset("iris")

数据集简单统计

Python可视化学习之seaborn绘制矩阵图详解

2、seaborn.pairplot

语法:seaborn.pairplot(data, hue=None, hue_order=None, palette=None, vars=None, x_vars=None, y_vars=None, kind='scatter', diag_kind='auto', markers=None, height=2.5, aspect=1, corner=False, dropna=True, plot_kws=None, diag_kws=None, grid_kws=None, size=None)

g = sns.pairplot(pd_iris)
g.fig.set_size_inches(12,12)#figure大小
sns.set(style='whitegrid',font_scale=1.5)#文本大小

Python可视化学习之seaborn绘制矩阵图详解

对角线4张图是变量自身的分布直方图;

非对角线的 12 张就是某个变量和另一个变量的关系。

加上分类变量

g = sns.pairplot(pd_iris,
                 hue='class'#按照三种花分类
                )
sns.set(style='whitegrid')
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

修改调色盘

可以使用Matplotlib、seaborn、颜色号list等色盘。

可参考:Python可视化学习之seaborn调色盘

import palettable 
g = sns.pairplot(pd_iris,
                 hue='class',
                 palette=palettable.cartocolors.qualitative.Bold_9.mpl_colors,#palettable颜色盘
                
                )
sns.set(style='whitegrid')
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

g = sns.pairplot(pd_iris,
                 hue='class',
                palette='Set1',#Matplotlib颜色
                
                )
sns.set(style='whitegrid')
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

g = sns.pairplot(pd_iris,
                 hue='class',
                palette=['#dc2624', '#2b4750', '#45a0a2'],#使用传入的颜色list
                
                )
sns.set(style='whitegrid')
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

x,y轴方向选取相同子集 

import palettable
g = sns.pairplot(pd_iris,
                 hue='class',
                 palette=palettable.cartocolors.qualitative.Bold_9.mpl_colors,
                 vars=['sepal length(cm)','sepal width(cm)'],#x,y轴方向选取相同子集绘图
                
                )
sns.set(style='whitegrid')
g.fig.set_size_inches(12,6)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

x,y轴方向选取不同子集

import palettable
g = sns.pairplot(pd_iris,
                 hue='class',
                 palette=palettable.cartocolors.qualitative.Bold_9.mpl_colors,
                 x_vars=['sepal length(cm)','sepal width(cm)'],#x,y轴方向选取不同子集
                 y_vars=['petal length(cm)','petal width(cm)'],
                
                )
sns.set(style='whitegrid')
g.fig.set_size_inches(12,6)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

非对角线散点图加趋势线 

import palettable
g = sns.pairplot(pd_iris,
                 hue='class',
                 palette=palettable.cartocolors.qualitative.Bold_9.mpl_colors,
                 kind='reg',#默认为scatter,reg加上趋势线                 
                
                )
sns.set(style='whitegrid')
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

对角线上的四个图绘制方式

可选参数为‘auto’, ‘hist’(默认), ‘kde’, None。

import palettable
g = sns.pairplot(pd_iris,
                 hue='class',
                 palette=palettable.cartocolors.qualitative.Bold_9.mpl_colors,
                 diag_kind='hist',#hist直方图               
                
                )
sns.set(style='whitegrid')
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

只显示网格下三角图形 

import palettable
g = sns.pairplot(pd_iris,
                 hue='class',
                 palette='Set1',
                 corner=True#图形显示左下角
                
                )
 
g.fig.set_size_inches(12,12)
sns.set(font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

图形外观设置 

import palettable
g = sns.pairplot(pd_iris,
                 hue='class',
                 palette='Set1',
                 markers=['$\clubsuit$','.','+'],#散点图的marker
                 plot_kws=dict(s=50, edgecolor="r", linewidth=1),#非对角线上的图marker大小、外框、外框线宽
                 diag_kws=dict(shade=True)#对角线上核密度图是否填充
                 
                
                )
g.fig.set_size_inches(12,12)
sns.set(font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

3、seaborn.PairGrid(更灵活的绘制矩阵图)

seaborn.PairGrid(data, hue=None, hue_order=None, palette=None, hue_kws=None, vars=None, x_vars=None, y_vars=None, corner=False, diag_sharey=True, height=2.5, aspect=1, layout_pad=0, despine=True, dropna=True, size=None)

每个子图绘制同类型的图

g = sns.PairGrid(pd_iris, 
                 hue='class',
                 palette='husl',)
g = g.map(plt.scatter)#map每个子图绘制一样类型的图
g = g.add_legend()
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

对角线和非对角线分别绘制不同类型图

g = sns.PairGrid(pd_iris, 
                 hue='class',
                palette='Set1',)
g = g.map_diag(plt.hist)#对角线绘制直方图
g = g.map_offdiag(plt.scatter)#非对角线绘制散点图
g = g.add_legend()
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

对角线上方、对角线、对角线下方分别绘制不同类型图

g = sns.PairGrid(pd_iris, hue='class',)
g = g.map_upper(sns.scatterplot)
g = g.map_lower(sns.kdeplot, colors="C0")
g = g.map_diag(sns.kdeplot, lw=2)3绘制核密度图
g = g.add_legend()#添加图例
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

其它一些参数修改

g = sns.PairGrid(pd_iris, hue='class',
                 palette='Set1',
                 hue_kws={"marker": ["^", "s", "D"]},#设置marker
                 diag_sharey=False,
                )
g = g.map_upper(sns.scatterplot,edgecolor="w", s=40)#设置点大小,外框颜色
g = g.map_lower(sns.kdeplot, colors="#01a2d9")#设置下三角图形颜色
g = g.map_diag(sns.kdeplot, lw=3)#对角图形颜色
g = g.add_legend()#添加图例
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

以上就是Python可视化学习之seaborn绘制矩阵图详解的详细内容,更多关于Python seaborn矩阵图的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
Django数据库操作的实例(增删改查)
Sep 04 Python
浅谈Python NLP入门教程
Dec 25 Python
python+opencv识别图片中的圆形
Mar 25 Python
python3+PyQt5使用数据库表视图
Apr 24 Python
Python实现简单石头剪刀布游戏
Jan 20 Python
新年快乐! python实现绚烂的烟花绽放效果
Jan 30 Python
python实现H2O中的随机森林算法介绍及其项目实战
Aug 29 Python
python3 tcp的粘包现象和解决办法解析
Dec 09 Python
关于Tensorflow分布式并行策略
Feb 03 Python
Python代码一键转Jar包及Java调用Python新姿势
Mar 10 Python
详解解决jupyter不能使用pytorch的问题
Feb 18 Python
python 模块重载的五种方法
Apr 24 Python
Python matplotlib可视化之绘制韦恩图
Python语言中的数据类型-序列
Feb 24 #Python
浅析python中特殊文件和特殊函数
Feb 24 #Python
Python中字符串对象语法分享
Feb 24 #Python
Python+Matplotlib+LaTeX玩转数学公式
Python语言内置数据类型
Feb 24 #Python
Python中的程序流程控制语句
Feb 24 #Python
You might like
php数组函数序列之prev() - 移动数组内部指针到上一个元素的位置,并返回该元素值
2011/10/31 PHP
计算php页面运行时间的函数介绍
2013/07/01 PHP
PHP strip_tags保留多个HTML标签的方法
2016/05/22 PHP
ThinkPHP3.2.1图片验证码实现方法
2016/08/19 PHP
解决出现SoapFault (looks like we got no XML document)的问题
2017/06/24 PHP
javascript 静态对象和构造函数的使用和公私问题
2010/03/02 Javascript
node.js中的fs.writeSync方法使用说明
2014/12/15 Javascript
javascript抽象工厂模式详细说明
2014/12/16 Javascript
jquery UI Datepicker时间控件的使用及问题解决
2016/04/28 Javascript
jsp 网站引入外部css或者js失效问题解决
2016/10/31 Javascript
javascript 组合按键事件监听实现代码
2017/02/21 Javascript
javascript实现的图片预览功能
2017/03/25 Javascript
浅谈js中的this问题
2017/08/31 Javascript
vueScroll实现移动端下拉刷新、上拉加载
2019/03/22 Javascript
[00:28]DOTA2北京网鱼队选拔赛
2015/04/08 DOTA
[33:09]完美世界DOTA2联赛循环赛 Forest vs DM BO2第二场 10.29
2020/10/29 DOTA
python 查找文件夹下所有文件 实现代码
2009/07/01 Python
python利用matplotlib库绘制饼图的方法示例
2016/12/18 Python
详谈Numpy中数组重塑、合并与拆分方法
2018/04/17 Python
django 将model转换为字典的方法示例
2018/10/16 Python
python正向最大匹配分词和逆向最大匹配分词的实例
2018/11/14 Python
Python如何实现转换URL详解
2019/07/02 Python
Python argparse模块使用方法解析
2020/02/20 Python
详解PyQt5信号与槽的几种高级玩法
2020/03/24 Python
建筑工程自我鉴定
2013/10/18 职场文书
财务会计毕业生自荐信
2013/11/02 职场文书
师范学院美术系毕业生自我鉴定
2014/01/29 职场文书
工作迟到检讨书
2014/02/21 职场文书
人力资源经理的岗位职责
2014/03/02 职场文书
投标售后服务承诺书
2015/04/29 职场文书
离婚被告答辩状
2015/05/22 职场文书
导游词之太行山青龙峡
2020/01/14 职场文书
python 使用Tensorflow训练BP神经网络实现鸢尾花分类
2021/05/12 Python
Go语言的协程上下文的几个方法和用法
2022/04/11 Golang
NASA 机智号火星直升机拍到了毅力号设备碎片
2022/04/29 数码科技