python 3利用Dlib 19.7实现摄像头人脸检测特征点标定


Posted in Python onFebruary 26, 2018

Python 3 利用 Dlib 19.7 实现摄像头人脸检测特征点标定

0.引言

利用python开发,借助Dlib库捕获摄像头中的人脸,进行实时特征点标定;

python 3利用Dlib 19.7实现摄像头人脸检测特征点标定

图1 工程效果示例(gif)

python 3利用Dlib 19.7实现摄像头人脸检测特征点标定

图2 工程效果示例(静态图片)

(实现比较简单,代码量也比较少,适合入门或者兴趣学习。)

1.开发环境

python:

3.6.3

dlib:

  19.7

OpenCv, numpy

import dlib     # 人脸识别的库dlib
import numpy as np # 数据处理的库numpy
import cv2     # 图像处理的库OpenCv

2.源码介绍

其实实现很简单,主要分为两个部分:摄像头调用+人脸特征点标定

2.1 摄像头调用

介绍下opencv中摄像头的调用方法;

利用 cap = cv2.VideoCapture(0) 创建一个对象;

(具体可以参考官方文档)

# 2018-2-26
# By TimeStamp
# cnblogs: http://www.cnblogs.com/AdaminXie

"""
cv2.VideoCapture(), 创建cv2摄像头对象/ open the default camera

  Python: cv2.VideoCapture() → <VideoCapture object>

  Python: cv2.VideoCapture(filename) → <VideoCapture object>  
  filename ? name of the opened video file (eg. video.avi) or image sequence (eg. img_%02d.jpg, which will read samples like img_00.jpg, img_01.jpg, img_02.jpg, ...)

  Python: cv2.VideoCapture(device) → <VideoCapture object>
  device ? id of the opened video capturing device (i.e. a camera index). If there is a single camera connected, just pass 0.

"""
cap = cv2.VideoCapture(0)


"""
cv2.VideoCapture.set(propId, value),设置视频参数;

  propId:
  CV_CAP_PROP_POS_MSEC Current position of the video file in milliseconds.
  CV_CAP_PROP_POS_FRAMES 0-based index of the frame to be decoded/captured next.
  CV_CAP_PROP_POS_AVI_RATIO Relative position of the video file: 0 - start of the film, 1 - end of the film.
  CV_CAP_PROP_FRAME_WIDTH Width of the frames in the video stream.
  CV_CAP_PROP_FRAME_HEIGHT Height of the frames in the video stream.
  CV_CAP_PROP_FPS Frame rate.
  CV_CAP_PROP_FOURCC 4-character code of codec.
  CV_CAP_PROP_FRAME_COUNT Number of frames in the video file.
  CV_CAP_PROP_FORMAT Format of the Mat objects returned by retrieve() .
  CV_CAP_PROP_MODE Backend-specific value indicating the current capture mode.
  CV_CAP_PROP_BRIGHTNESS Brightness of the image (only for cameras).
  CV_CAP_PROP_CONTRAST Contrast of the image (only for cameras).
  CV_CAP_PROP_SATURATION Saturation of the image (only for cameras).
  CV_CAP_PROP_HUE Hue of the image (only for cameras).
  CV_CAP_PROP_GAIN Gain of the image (only for cameras).
  CV_CAP_PROP_EXPOSURE Exposure (only for cameras).
  CV_CAP_PROP_CONVERT_RGB Boolean flags indicating whether images should be converted to RGB.
  CV_CAP_PROP_WHITE_BALANCE_U The U value of the whitebalance setting (note: only supported by DC1394 v 2.x backend currently)
  CV_CAP_PROP_WHITE_BALANCE_V The V value of the whitebalance setting (note: only supported by DC1394 v 2.x backend currently)
  CV_CAP_PROP_RECTIFICATION Rectification flag for stereo cameras (note: only supported by DC1394 v 2.x backend currently)
  CV_CAP_PROP_ISO_SPEED The ISO speed of the camera (note: only supported by DC1394 v 2.x backend currently)
  CV_CAP_PROP_BUFFERSIZE Amount of frames stored in internal buffer memory (note: only supported by DC1394 v 2.x backend currently)
  
  value: 设置的参数值/ Value of the property
"""
cap.set(3, 480)

"""
cv2.VideoCapture.isOpened(), 检查摄像头初始化是否成功 / check if we succeeded
返回true或false
"""
cap.isOpened()

""" 
cv2.VideoCapture.read([imgage]) -> retval,image, 读取视频 / Grabs, decodes and returns the next video frame
返回两个值:
  一个是布尔值true/false,用来判断读取视频是否成功/是否到视频末尾
  图像对象,图像的三维矩阵
"""
flag, im_rd = cap.read()

2.2 人脸特征点标定

调用预测器“shape_predictor_68_face_landmarks.dat”进行68点标定,这是dlib训练好的模型,可以直接调用进行人脸68个人脸特征点的标定;

具体可以参考我的另一篇博客(python3利用Dlib19.7实现人脸68个特征点标定); 

2.3 源码

实现的方法比较简单:

利用 cv2.VideoCapture() 创建摄像头对象,然后利用 flag, im_rd = cv2.VideoCapture.read() 读取摄像头视频,im_rd就是视频中的一帧帧图像;

然后就类似于单张图像进行人脸检测,对这一帧帧的图像im_rd利用dlib进行特征点标定,然后绘制特征点;

你可以按下s键来获取当前截图,或者按下q键来退出摄像头;

# 2018-2-26

# By TimeStamp
# cnblogs: http://www.cnblogs.com/AdaminXie
# github: https://github.com/coneypo/Dlib_face_detection_from_camera

import dlib           #人脸识别的库dlib
import numpy as np       #数据处理的库numpy
import cv2           #图像处理的库OpenCv

# dlib预测器
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')

# 创建cv2摄像头对象
cap = cv2.VideoCapture(0)

# cap.set(propId, value)
# 设置视频参数,propId设置的视频参数,value设置的参数值
cap.set(3, 480)

# 截图screenshoot的计数器
cnt = 0

# cap.isOpened() 返回true/false 检查初始化是否成功
while(cap.isOpened()):

  # cap.read()
  # 返回两个值:
  #  一个布尔值true/false,用来判断读取视频是否成功/是否到视频末尾
  #  图像对象,图像的三维矩阵
  flag, im_rd = cap.read()

  # 每帧数据延时1ms,延时为0读取的是静态帧
  k = cv2.waitKey(1)

  # 取灰度
  img_gray = cv2.cvtColor(im_rd, cv2.COLOR_RGB2GRAY)

  # 人脸数rects
  rects = detector(img_gray, 0)

  #print(len(rects))

  # 待会要写的字体
  font = cv2.FONT_HERSHEY_SIMPLEX

  # 标68个点
  if(len(rects)!=0):
    # 检测到人脸
    for i in range(len(rects)):
      landmarks = np.matrix([[p.x, p.y] for p in predictor(im_rd, rects[i]).parts()])

      for idx, point in enumerate(landmarks):
        # 68点的坐标
        pos = (point[0, 0], point[0, 1])

        # 利用cv2.circle给每个特征点画一个圈,共68个
        cv2.circle(im_rd, pos, 2, color=(0, 255, 0))

        # 利用cv2.putText输出1-68
        cv2.putText(im_rd, str(idx + 1), pos, font, 0.2, (0, 0, 255), 1, cv2.LINE_AA)
    cv2.putText(im_rd, "faces: "+str(len(rects)), (20,50), font, 1, (0, 0, 255), 1, cv2.LINE_AA)
  else:
    # 没有检测到人脸
    cv2.putText(im_rd, "no face", (20, 50), font, 1, (0, 0, 255), 1, cv2.LINE_AA)

  # 添加说明
  im_rd = cv2.putText(im_rd, "s: screenshot", (20, 400), font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
  im_rd = cv2.putText(im_rd, "q: quit", (20, 450), font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)

  # 按下s键保存
  if (k == ord('s')):
    cnt+=1
    cv2.imwrite("screenshoot"+str(cnt)+".jpg", im_rd)

  # 按下q键退出
  if(k==ord('q')):
    break

  # 窗口显示
  cv2.imshow("camera", im_rd)

# 释放摄像头
cap.release()

# 删除建立的窗口
cv2.destroyAllWindows()

如果对您有帮助,欢迎在GitHub上star本项目。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
在Python中处理字符串之isdigit()方法的使用
May 18 Python
Python中set与frozenset方法和区别详解
May 23 Python
python 打印直角三角形,等边三角形,菱形,正方形的代码
Nov 21 Python
python+matplotlib绘制饼图散点图实例代码
Jan 20 Python
djang常用查询SQL语句的使用代码
Feb 15 Python
搞定这套Python爬虫面试题(面试会so easy)
Apr 03 Python
使用Python实现跳一跳自动跳跃功能
Jul 10 Python
python+tkinter实现学生管理系统
Aug 20 Python
使用python去除图片白色像素的实例
Dec 12 Python
tensorflow通过模型文件,使用tensorboard查看其模型图Graph方式
Jan 23 Python
Python通过yagmail实现发送邮件代码解析
Oct 27 Python
python游戏开发Pygame框架
Apr 22 Python
python3利用Dlib19.7实现人脸68个特征点标定
Feb 26 #Python
python微信跳一跳系列之棋子定位颜色识别
Feb 26 #Python
python微信跳一跳系列之棋子定位像素遍历
Feb 26 #Python
python3.6+opencv3.4实现鼠标交互查看图片像素
Feb 26 #Python
python微信跳一跳系列之自动计算跳一跳距离
Feb 26 #Python
python微信跳一跳系列之色块轮廓定位棋盘
Feb 26 #Python
tensorflow入门之训练简单的神经网络方法
Feb 26 #Python
You might like
过滤掉PHP数组中的重复值的实现代码
2011/07/17 PHP
一个显示某段时间内每个月的方法 返回由这些月份组成的数组
2012/05/16 PHP
PHP curl 抓取AJAX异步内容示例
2014/09/09 PHP
PHP之将POST数据转化为字符串的实现代码
2016/11/03 PHP
javascript 窗口加载蒙板 内嵌网页内容
2010/11/19 Javascript
一个关于jqGrid使用的小例子(行按钮)
2011/11/04 Javascript
JavaScript高级程序设计(第3版)学习笔记5 js语句
2012/10/11 Javascript
不使用XMLHttpRequest实现异步加载 Iframe和script
2012/10/29 Javascript
jquery中load方法的用法及注意事项说明
2014/02/22 Javascript
js查找节点的方法小结
2015/01/13 Javascript
js实现touch移动触屏滑动事件
2015/04/17 Javascript
JS动态日期时间的获取方法
2015/09/28 Javascript
JS实现iframe自适应高度的方法示例
2017/01/07 Javascript
使用 Node.js 对文本内容分词和关键词抽取
2017/05/27 Javascript
详解jQuery中的isPlainObject()使用方法
2018/02/27 jQuery
JS使用Prim算法和Kruskal算法实现最小生成树
2019/01/17 Javascript
JS实现的冒泡排序,快速排序,插入排序算法示例
2019/03/02 Javascript
JavaScript 装逼指南(js另类写法)
2020/05/10 Javascript
[04:44]DOTA2英雄梦之声_第12期_矮人直升机
2014/06/21 DOTA
[04:54]DOTA2 2017国际邀请赛:上届冠军WINGS采访短片
2017/08/09 DOTA
python 合并文件的具体实例
2013/08/08 Python
使用python Telnet远程登录执行程序的方法
2019/01/26 Python
Python 多个图同时在不同窗口显示的实现方法
2019/07/07 Python
Django查询优化及ajax编码格式原理解析
2020/03/25 Python
python中如何写类
2020/06/29 Python
使用PyWeChatSpy自动回复微信拍一拍功能的实现代码
2020/07/02 Python
html5 svg 中元素点击事件添加方法
2013/01/16 HTML / CSS
Sneaker Studio匈牙利:购买运动鞋
2018/03/26 全球购物
食堂个人先进事迹
2014/01/22 职场文书
办公室秘书岗位职责范本
2014/02/11 职场文书
毕业生写求职信的要点
2014/03/04 职场文书
2014学习全国两会精神心得体会2000字
2014/03/11 职场文书
党员岗位承诺书
2014/03/25 职场文书
意向书范本
2014/07/29 职场文书
2014年前台文员工作总结
2014/12/08 职场文书
mysql sql常用语句大全
2022/06/21 MySQL