python 3利用Dlib 19.7实现摄像头人脸检测特征点标定


Posted in Python onFebruary 26, 2018

Python 3 利用 Dlib 19.7 实现摄像头人脸检测特征点标定

0.引言

利用python开发,借助Dlib库捕获摄像头中的人脸,进行实时特征点标定;

python 3利用Dlib 19.7实现摄像头人脸检测特征点标定

图1 工程效果示例(gif)

python 3利用Dlib 19.7实现摄像头人脸检测特征点标定

图2 工程效果示例(静态图片)

(实现比较简单,代码量也比较少,适合入门或者兴趣学习。)

1.开发环境

python:

3.6.3

dlib:

  19.7

OpenCv, numpy

import dlib     # 人脸识别的库dlib
import numpy as np # 数据处理的库numpy
import cv2     # 图像处理的库OpenCv

2.源码介绍

其实实现很简单,主要分为两个部分:摄像头调用+人脸特征点标定

2.1 摄像头调用

介绍下opencv中摄像头的调用方法;

利用 cap = cv2.VideoCapture(0) 创建一个对象;

(具体可以参考官方文档)

# 2018-2-26
# By TimeStamp
# cnblogs: http://www.cnblogs.com/AdaminXie

"""
cv2.VideoCapture(), 创建cv2摄像头对象/ open the default camera

  Python: cv2.VideoCapture() → <VideoCapture object>

  Python: cv2.VideoCapture(filename) → <VideoCapture object>  
  filename ? name of the opened video file (eg. video.avi) or image sequence (eg. img_%02d.jpg, which will read samples like img_00.jpg, img_01.jpg, img_02.jpg, ...)

  Python: cv2.VideoCapture(device) → <VideoCapture object>
  device ? id of the opened video capturing device (i.e. a camera index). If there is a single camera connected, just pass 0.

"""
cap = cv2.VideoCapture(0)


"""
cv2.VideoCapture.set(propId, value),设置视频参数;

  propId:
  CV_CAP_PROP_POS_MSEC Current position of the video file in milliseconds.
  CV_CAP_PROP_POS_FRAMES 0-based index of the frame to be decoded/captured next.
  CV_CAP_PROP_POS_AVI_RATIO Relative position of the video file: 0 - start of the film, 1 - end of the film.
  CV_CAP_PROP_FRAME_WIDTH Width of the frames in the video stream.
  CV_CAP_PROP_FRAME_HEIGHT Height of the frames in the video stream.
  CV_CAP_PROP_FPS Frame rate.
  CV_CAP_PROP_FOURCC 4-character code of codec.
  CV_CAP_PROP_FRAME_COUNT Number of frames in the video file.
  CV_CAP_PROP_FORMAT Format of the Mat objects returned by retrieve() .
  CV_CAP_PROP_MODE Backend-specific value indicating the current capture mode.
  CV_CAP_PROP_BRIGHTNESS Brightness of the image (only for cameras).
  CV_CAP_PROP_CONTRAST Contrast of the image (only for cameras).
  CV_CAP_PROP_SATURATION Saturation of the image (only for cameras).
  CV_CAP_PROP_HUE Hue of the image (only for cameras).
  CV_CAP_PROP_GAIN Gain of the image (only for cameras).
  CV_CAP_PROP_EXPOSURE Exposure (only for cameras).
  CV_CAP_PROP_CONVERT_RGB Boolean flags indicating whether images should be converted to RGB.
  CV_CAP_PROP_WHITE_BALANCE_U The U value of the whitebalance setting (note: only supported by DC1394 v 2.x backend currently)
  CV_CAP_PROP_WHITE_BALANCE_V The V value of the whitebalance setting (note: only supported by DC1394 v 2.x backend currently)
  CV_CAP_PROP_RECTIFICATION Rectification flag for stereo cameras (note: only supported by DC1394 v 2.x backend currently)
  CV_CAP_PROP_ISO_SPEED The ISO speed of the camera (note: only supported by DC1394 v 2.x backend currently)
  CV_CAP_PROP_BUFFERSIZE Amount of frames stored in internal buffer memory (note: only supported by DC1394 v 2.x backend currently)
  
  value: 设置的参数值/ Value of the property
"""
cap.set(3, 480)

"""
cv2.VideoCapture.isOpened(), 检查摄像头初始化是否成功 / check if we succeeded
返回true或false
"""
cap.isOpened()

""" 
cv2.VideoCapture.read([imgage]) -> retval,image, 读取视频 / Grabs, decodes and returns the next video frame
返回两个值:
  一个是布尔值true/false,用来判断读取视频是否成功/是否到视频末尾
  图像对象,图像的三维矩阵
"""
flag, im_rd = cap.read()

2.2 人脸特征点标定

调用预测器“shape_predictor_68_face_landmarks.dat”进行68点标定,这是dlib训练好的模型,可以直接调用进行人脸68个人脸特征点的标定;

具体可以参考我的另一篇博客(python3利用Dlib19.7实现人脸68个特征点标定); 

2.3 源码

实现的方法比较简单:

利用 cv2.VideoCapture() 创建摄像头对象,然后利用 flag, im_rd = cv2.VideoCapture.read() 读取摄像头视频,im_rd就是视频中的一帧帧图像;

然后就类似于单张图像进行人脸检测,对这一帧帧的图像im_rd利用dlib进行特征点标定,然后绘制特征点;

你可以按下s键来获取当前截图,或者按下q键来退出摄像头;

# 2018-2-26

# By TimeStamp
# cnblogs: http://www.cnblogs.com/AdaminXie
# github: https://github.com/coneypo/Dlib_face_detection_from_camera

import dlib           #人脸识别的库dlib
import numpy as np       #数据处理的库numpy
import cv2           #图像处理的库OpenCv

# dlib预测器
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')

# 创建cv2摄像头对象
cap = cv2.VideoCapture(0)

# cap.set(propId, value)
# 设置视频参数,propId设置的视频参数,value设置的参数值
cap.set(3, 480)

# 截图screenshoot的计数器
cnt = 0

# cap.isOpened() 返回true/false 检查初始化是否成功
while(cap.isOpened()):

  # cap.read()
  # 返回两个值:
  #  一个布尔值true/false,用来判断读取视频是否成功/是否到视频末尾
  #  图像对象,图像的三维矩阵
  flag, im_rd = cap.read()

  # 每帧数据延时1ms,延时为0读取的是静态帧
  k = cv2.waitKey(1)

  # 取灰度
  img_gray = cv2.cvtColor(im_rd, cv2.COLOR_RGB2GRAY)

  # 人脸数rects
  rects = detector(img_gray, 0)

  #print(len(rects))

  # 待会要写的字体
  font = cv2.FONT_HERSHEY_SIMPLEX

  # 标68个点
  if(len(rects)!=0):
    # 检测到人脸
    for i in range(len(rects)):
      landmarks = np.matrix([[p.x, p.y] for p in predictor(im_rd, rects[i]).parts()])

      for idx, point in enumerate(landmarks):
        # 68点的坐标
        pos = (point[0, 0], point[0, 1])

        # 利用cv2.circle给每个特征点画一个圈,共68个
        cv2.circle(im_rd, pos, 2, color=(0, 255, 0))

        # 利用cv2.putText输出1-68
        cv2.putText(im_rd, str(idx + 1), pos, font, 0.2, (0, 0, 255), 1, cv2.LINE_AA)
    cv2.putText(im_rd, "faces: "+str(len(rects)), (20,50), font, 1, (0, 0, 255), 1, cv2.LINE_AA)
  else:
    # 没有检测到人脸
    cv2.putText(im_rd, "no face", (20, 50), font, 1, (0, 0, 255), 1, cv2.LINE_AA)

  # 添加说明
  im_rd = cv2.putText(im_rd, "s: screenshot", (20, 400), font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
  im_rd = cv2.putText(im_rd, "q: quit", (20, 450), font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)

  # 按下s键保存
  if (k == ord('s')):
    cnt+=1
    cv2.imwrite("screenshoot"+str(cnt)+".jpg", im_rd)

  # 按下q键退出
  if(k==ord('q')):
    break

  # 窗口显示
  cv2.imshow("camera", im_rd)

# 释放摄像头
cap.release()

# 删除建立的窗口
cv2.destroyAllWindows()

如果对您有帮助,欢迎在GitHub上star本项目。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python线程、进程和协程详解
Jul 19 Python
利用pyinstaller或virtualenv将python程序打包详解
Mar 22 Python
详解python 拆包可迭代数据如tuple, list
Dec 29 Python
Python实现GUI学生信息管理系统
Apr 05 Python
用python实现将数组元素按从小到大的顺序排列方法
Jul 02 Python
python 提取tuple类型值中json格式的key值方法
Dec 31 Python
python虚拟环境的安装和配置(virtualenv,virtualenvwrapper)
Aug 09 Python
基于Python实现ComicReaper漫画自动爬取脚本过程解析
Nov 11 Python
Python 脚本实现淘宝准点秒杀功能
Nov 13 Python
Python imutils 填充图片周边为黑色的实现
Jan 19 Python
通过代码实例了解Python sys模块
Sep 14 Python
Python读取文件夹下的所有文件实例代码
Apr 02 Python
python3利用Dlib19.7实现人脸68个特征点标定
Feb 26 #Python
python微信跳一跳系列之棋子定位颜色识别
Feb 26 #Python
python微信跳一跳系列之棋子定位像素遍历
Feb 26 #Python
python3.6+opencv3.4实现鼠标交互查看图片像素
Feb 26 #Python
python微信跳一跳系列之自动计算跳一跳距离
Feb 26 #Python
python微信跳一跳系列之色块轮廓定位棋盘
Feb 26 #Python
tensorflow入门之训练简单的神经网络方法
Feb 26 #Python
You might like
php float不四舍五入截取浮点型字符串方法总结
2013/10/28 PHP
Thinkphp中import的几个用法详细介绍
2014/07/02 PHP
从零开始学YII2框架(六)高级应用程序模板
2014/08/20 PHP
如何利用PHP实现上传图片功能详解
2020/09/24 PHP
javascript prototype,executing,context,closure
2008/12/24 Javascript
Javascript isArray 数组类型检测函数
2009/10/08 Javascript
JS 如果改变span标签的是否隐藏属性
2011/10/06 Javascript
javascript同页面多次调用弹出层具体实例代码
2013/08/16 Javascript
解决js中window.open弹出的是上次的缓存页面问题
2013/12/29 Javascript
jQuery简单实现网页选项卡特效
2014/11/24 Javascript
angularjs中的e2e测试实例
2014/12/06 Javascript
JS+CSS实现下拉列表框美化效果(3款)
2015/08/15 Javascript
JavaScript对象参数的引用传递
2016/01/14 Javascript
Angular模板表单校验方法详解
2017/08/11 Javascript
vue实现自定义多选与单选的答题功能
2018/07/05 Javascript
微信小程序实现红包功能(后端PHP实现逻辑)
2018/07/11 Javascript
使用angular-cli webpack创建多个包的方法
2018/10/16 Javascript
Node.js assert断言原理与用法分析
2019/01/04 Javascript
jQuery - AJAX load() 实例用法详解
2019/08/27 jQuery
简单谈谈python中的Queue与多进程
2016/08/25 Python
Python增量循环删除MySQL表数据的方法
2016/09/23 Python
利用Python批量压缩png方法实例(支持过滤个别文件与文件夹)
2017/07/30 Python
Python 列表理解及使用方法
2017/10/27 Python
Python数据结构与算法之使用队列解决小猫钓鱼问题
2017/12/14 Python
Python的bit_length函数来二进制的位数方法
2019/08/27 Python
Python进程的通信Queue、Pipe实例分析
2020/03/30 Python
如何利用Python识别图片中的文字
2020/05/31 Python
python中通过pip安装库文件时出现“EnvironmentError: [WinError 5] 拒绝访问”的问题及解决方案
2020/08/11 Python
python实现模拟器爬取抖音评论数据的示例代码
2021/01/06 Python
C# .NET面试题
2015/11/28 面试题
企业年会主持词
2014/03/27 职场文书
遵纪守法演讲稿
2014/05/23 职场文书
美德少年事迹材料1000字
2014/08/21 职场文书
感动中国何玥观后感
2015/06/02 职场文书
python基础之爬虫入门
2021/05/10 Python
Python初学者必备的文件读写指南
2021/06/23 Python