基于python图像处理API的使用示例


Posted in Python onApril 03, 2020

1.图像处理库

import cv2 as cv
from PIL import *

常用的图像处理技术有图像读取,写入,绘图,图像色彩空间转换,图像几何变换,图像形态学,图像梯度,图像边缘检测,图像轮廓,图像分割,图像去噪,图像加水印以及修复水印等

2.opencv常用的接口

cv.imread()
  读取图片,返回numpy
cv.imwrite()  
  写入图片
cv.cvtColor()  
  图像色彩空间转换
cv.add()
cv.subtract()
cv.multiply()
cv.divide()
cv.applyColorMap()
  减少了运算量,改变图片风格,突出图片特征
cv.bitwise_and(参数1, 参数2)
  逻辑与
cv.bitwise_xor(参数1, 参数2)
  逻辑异或
cv.bitwise_or(参数1, 参数2)
  逻辑或
cv.bitwise_not(参数)
  图像值取反操作
cv.split(src)  
  通道分离
cv.merge(mv)
  通道合并
cv2.inRange(hsv, lower, upper)  
  提取指定色彩范围区域inRange
cv.meanStdDev()  
  均值和标准差
cv.minMaxLoc()
  最大最小值和相应的位置
cv.normalize()
  像素归一化
cv.VideoCapture()
  视频文件
cv.flip(src,flipcode,dst)
  图像翻转
cv.rectangle()  
  矩形
cv.circle()
  圆
cv.ellipse()
  椭圆
cv.calcHist()
  图像直方图
cv.equalizeHist()
  图像直方图均衡化可以用于图像增强、对输入图像进行直方图均衡化处理,提升后续对象检测的准确率
cv.compareHist()
  图像直方图比较,就是计算两幅图像的直方图数据,比较两组数据的相似性,从而得到两幅图像之间的相似程度
cv.calcBackProject()
  图像直方图反向投影是通过构建指定模板图像的二维直方图空间与目标的二维直方图空间,进行直方图数据归一化之后, 进行比率操作,对所有得到非零数值,生成查找表对原图像进行像素映射之后,再进行图像模糊输出的结果
cv.blur()
  均值图像模糊卷积
cv.GaussianBlur()
  高斯模糊
均值模糊 是卷积核的系数完全一致,高斯模糊考虑了中心像素距离的影响,对距离中心像素使用高斯分布公式生成不同的权重系数给卷积核,然后用此卷积核完成图像卷积得到输出结果就是图像高斯模糊之后的输出
cv.medianBlur()
  中值滤波对图像特定噪声类型(椒盐噪声)会取得比较好的去噪效果,也是常见的图像去噪声与增强的方法之一
cv.fastNlMeansDenoisingColored()
  非局部均值滤波
cv.bilateralFilter()
  高斯双边模糊,卷积处理实现图像模糊的同时对图像边缘不会造成破坏,滤波之后的输出完整的保存了图像整体边缘(轮廓)信息
cv.pyrMeanShiftFiltering()
  均值迁移模糊,均值迁移模糊是图像边缘保留滤波算法中一种,经常用来在对图像进行分水岭分割之前去噪声,可以大幅度提升分水岭分割的效果
cv.integral()
  图像积分图算法
cv.edgePreservingFilter()
  快速的图像边缘滤波算法
cv.filter2D()
  自定义卷积核来自定义的滤波器
cv.Sobel()
  图像梯度提取算子,梯度信息是图像的最原始特征数据,进一步处理之后就可以生成一些比较高级的特征用来表示一张图像实现基于图像特征的匹配,图像分类等应用
cv.Laplacian()
  拉普拉斯算子更容易受到噪声的扰动,所以经常对要处理的图像首先进行一个高斯模糊,然后再进行拉普拉斯算子的边缘提取,而且在一些场景中会把这两步合并成为一步,就是我们经常听说的LOG算子
cv.convertScaleAbs()
  增强对比度
cv.addWeighted()
  USM锐化增强算法
cv.Canny()
  Canny编边缘检测器,有效的噪声抑制,完整边缘提取能力
cv.pyrUp()
cv.pyrDown()
  图像金字塔
cv.matchTemplate()
  图像模板匹配
cv.threshold()
  二值化
cv.adaptiveThreshold()
  自适应阈值算法
cv.connectedComponents()
  二值图像联通组件寻找
cv.connectedComponentsWithStats()
  二值图像连通组件状态统计
cv.findContours()
  获取二值图像的轮廓拓扑信息
cv.drawContours()
  绘制轮廓
cv.boundingRect()
cv.minAreaRect()
  求取轮廓外接矩形
cv.contourArea()
  轮廓点集计算面积
cv.arcLength()
  计算轮廓曲线的弧长
cv.approxPolyDP()
  图像二值图像的每个轮廓,可以使用轮廓逼近,逼近每个轮廓的真实几何形状,从而通过轮廓逼近的输出结果判断一个对象是什么形状
cv.fitEllipse()
  轮廓点进行拟合,生成一个拟合的圆形或者椭圆
cv.fitLine()
  直线拟合
cv.dilate()
  膨胀可以看成是最大值滤波,即用最大值替换中心像素点
cv.erode()
  腐蚀可以看出是最小值滤波,即用最小值替换中心像素点
cv.getStructuringElement()
  获取结构元素
cv.morphologyEx()
  形态学的操作
  开操作可以删除二值图像中小的干扰块,降低图像二值化之后噪点过多的问题
  操作可以填充二值图像中孔洞区域,形成完整的闭合区域连通组件
  顶帽操作有时候对于我们提取图像中微小部分特别有用
cv.inpaint()
  图像修复
cv.findHomography()
cv.warpPerspective()
  透视变换
cv.kmeans()
  KMeans数据分类
cv.QRCodeDetector()
cv.QRCodeDetector.detectAndDecode()
  二维码检测与识别

3.PIL库接口

Image.fromarray()
  将numpy图像转Image
ImageFont.truetype("china.ttf", size=30)
  加载图像字体库
ImageDraw.Draw()
  绘图
draw.text()
  图像上添加水印

到此这篇关于基于python图像处理API的使用示例的文章就介绍到这了,更多相关python 图像处理API内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
讲解Python中if语句的嵌套用法
May 14 Python
Python数据分析之真实IP请求Pandas详解
Nov 18 Python
Python元组拆包和具名元组解析实例详解
Mar 26 Python
对django中render()与render_to_response()的区别详解
Oct 16 Python
python实现在图片上画特定大小角度矩形框
Oct 24 Python
Python values()与itervalues()的用法详解
Nov 27 Python
python实现电子词典
Mar 03 Python
Python之关于类变量的两种赋值区别详解
Mar 12 Python
学会python自动收发邮件 代替你问候女友
May 20 Python
浅谈Pycharm的项目文件名是红色的原因及解决方式
Jun 01 Python
如何理解python对象
Jun 21 Python
python使用布隆过滤器的实现示例
Aug 20 Python
解决json中ensure_ascii=False的问题
Apr 03 #Python
基于Python的OCR实现示例
Apr 03 #Python
Python %r和%s区别代码实例解析
Apr 03 #Python
解决flask接口返回的内容中文乱码的问题
Apr 03 #Python
使用python批量转换文件编码为UTF-8的实现
Apr 03 #Python
Python sql注入 过滤字符串的非法字符实例
Apr 03 #Python
python传到前端的数据,双引号被转义的问题
Apr 03 #Python
You might like
Ajax PHP简单入门教程代码
2008/04/25 PHP
PHP中对用户身份认证实现两种方法
2011/06/04 PHP
PHP中使用数组实现堆栈数据结构的代码
2012/02/05 PHP
PHP字符串的递增和递减示例介绍
2014/02/11 PHP
PHP入门经历和学习过程分享
2014/04/11 PHP
使用php语句将数据库*.sql文件导入数据库
2014/05/05 PHP
php实现网站顶踩功能的完整前端代码
2015/07/19 PHP
深入探究PHP的多进程编程方法
2015/08/18 PHP
解决laravel 5.1报错:No supported encrypter found的办法
2017/06/07 PHP
PHP实现数据库统计时间戳按天分组输出数据的方法
2017/10/10 PHP
PHP Primary script unknown 解决方法总结
2019/08/22 PHP
extjs 学习笔记 四 带分页的grid
2009/10/20 Javascript
设为首页和收藏的Javascript代码(亲测兼容IE,Firefox,chrome等浏览器)
2013/11/18 Javascript
如何获取网站icon有哪些可行的方法
2014/06/05 Javascript
页面向下滚动ajax获取数据的实现方法(兼容手机)
2016/05/24 Javascript
jquery 动态增加,减少input表单的简单方法(必看)
2016/10/12 Javascript
js模拟微博发布消息
2017/02/23 Javascript
详解jQuery如何实现模糊搜索
2019/05/10 jQuery
Python3里的super()和__class__使用介绍
2015/04/23 Python
Python中max函数用法实例分析
2015/07/17 Python
基于Python 装饰器装饰类中的方法实例
2018/04/21 Python
Python中shapefile转换geojson的示例
2019/01/03 Python
python修改linux中文件(文件夹)的权限属性操作
2020/03/05 Python
Django+Celery实现动态配置定时任务的方法示例
2020/05/26 Python
从一次项目重构说起CSS3自定义变量在项目的使用方法
2021/03/01 HTML / CSS
涂鸦板简单实现 Html5编写属于自己的画画板
2016/07/05 HTML / CSS
意大利领先的奢侈品在线时装零售商:MCLABELS
2020/10/13 全球购物
中学教师请假制度
2014/02/03 职场文书
王老吉广告词
2014/03/20 职场文书
企业精细化管理实施方案
2014/03/23 职场文书
运动会演讲稿100字
2014/08/25 职场文书
副乡长群众路线教育实践活动个人对照检查材料
2014/09/19 职场文书
冰雪公主观后感
2015/06/16 职场文书
开学随笔
2015/08/15 职场文书
2016年党校科级干部培训班学习心得体会
2016/01/06 职场文书
外出听课学习心得体会
2016/01/15 职场文书