基于python图像处理API的使用示例


Posted in Python onApril 03, 2020

1.图像处理库

import cv2 as cv
from PIL import *

常用的图像处理技术有图像读取,写入,绘图,图像色彩空间转换,图像几何变换,图像形态学,图像梯度,图像边缘检测,图像轮廓,图像分割,图像去噪,图像加水印以及修复水印等

2.opencv常用的接口

cv.imread()
  读取图片,返回numpy
cv.imwrite()  
  写入图片
cv.cvtColor()  
  图像色彩空间转换
cv.add()
cv.subtract()
cv.multiply()
cv.divide()
cv.applyColorMap()
  减少了运算量,改变图片风格,突出图片特征
cv.bitwise_and(参数1, 参数2)
  逻辑与
cv.bitwise_xor(参数1, 参数2)
  逻辑异或
cv.bitwise_or(参数1, 参数2)
  逻辑或
cv.bitwise_not(参数)
  图像值取反操作
cv.split(src)  
  通道分离
cv.merge(mv)
  通道合并
cv2.inRange(hsv, lower, upper)  
  提取指定色彩范围区域inRange
cv.meanStdDev()  
  均值和标准差
cv.minMaxLoc()
  最大最小值和相应的位置
cv.normalize()
  像素归一化
cv.VideoCapture()
  视频文件
cv.flip(src,flipcode,dst)
  图像翻转
cv.rectangle()  
  矩形
cv.circle()
  圆
cv.ellipse()
  椭圆
cv.calcHist()
  图像直方图
cv.equalizeHist()
  图像直方图均衡化可以用于图像增强、对输入图像进行直方图均衡化处理,提升后续对象检测的准确率
cv.compareHist()
  图像直方图比较,就是计算两幅图像的直方图数据,比较两组数据的相似性,从而得到两幅图像之间的相似程度
cv.calcBackProject()
  图像直方图反向投影是通过构建指定模板图像的二维直方图空间与目标的二维直方图空间,进行直方图数据归一化之后, 进行比率操作,对所有得到非零数值,生成查找表对原图像进行像素映射之后,再进行图像模糊输出的结果
cv.blur()
  均值图像模糊卷积
cv.GaussianBlur()
  高斯模糊
均值模糊 是卷积核的系数完全一致,高斯模糊考虑了中心像素距离的影响,对距离中心像素使用高斯分布公式生成不同的权重系数给卷积核,然后用此卷积核完成图像卷积得到输出结果就是图像高斯模糊之后的输出
cv.medianBlur()
  中值滤波对图像特定噪声类型(椒盐噪声)会取得比较好的去噪效果,也是常见的图像去噪声与增强的方法之一
cv.fastNlMeansDenoisingColored()
  非局部均值滤波
cv.bilateralFilter()
  高斯双边模糊,卷积处理实现图像模糊的同时对图像边缘不会造成破坏,滤波之后的输出完整的保存了图像整体边缘(轮廓)信息
cv.pyrMeanShiftFiltering()
  均值迁移模糊,均值迁移模糊是图像边缘保留滤波算法中一种,经常用来在对图像进行分水岭分割之前去噪声,可以大幅度提升分水岭分割的效果
cv.integral()
  图像积分图算法
cv.edgePreservingFilter()
  快速的图像边缘滤波算法
cv.filter2D()
  自定义卷积核来自定义的滤波器
cv.Sobel()
  图像梯度提取算子,梯度信息是图像的最原始特征数据,进一步处理之后就可以生成一些比较高级的特征用来表示一张图像实现基于图像特征的匹配,图像分类等应用
cv.Laplacian()
  拉普拉斯算子更容易受到噪声的扰动,所以经常对要处理的图像首先进行一个高斯模糊,然后再进行拉普拉斯算子的边缘提取,而且在一些场景中会把这两步合并成为一步,就是我们经常听说的LOG算子
cv.convertScaleAbs()
  增强对比度
cv.addWeighted()
  USM锐化增强算法
cv.Canny()
  Canny编边缘检测器,有效的噪声抑制,完整边缘提取能力
cv.pyrUp()
cv.pyrDown()
  图像金字塔
cv.matchTemplate()
  图像模板匹配
cv.threshold()
  二值化
cv.adaptiveThreshold()
  自适应阈值算法
cv.connectedComponents()
  二值图像联通组件寻找
cv.connectedComponentsWithStats()
  二值图像连通组件状态统计
cv.findContours()
  获取二值图像的轮廓拓扑信息
cv.drawContours()
  绘制轮廓
cv.boundingRect()
cv.minAreaRect()
  求取轮廓外接矩形
cv.contourArea()
  轮廓点集计算面积
cv.arcLength()
  计算轮廓曲线的弧长
cv.approxPolyDP()
  图像二值图像的每个轮廓,可以使用轮廓逼近,逼近每个轮廓的真实几何形状,从而通过轮廓逼近的输出结果判断一个对象是什么形状
cv.fitEllipse()
  轮廓点进行拟合,生成一个拟合的圆形或者椭圆
cv.fitLine()
  直线拟合
cv.dilate()
  膨胀可以看成是最大值滤波,即用最大值替换中心像素点
cv.erode()
  腐蚀可以看出是最小值滤波,即用最小值替换中心像素点
cv.getStructuringElement()
  获取结构元素
cv.morphologyEx()
  形态学的操作
  开操作可以删除二值图像中小的干扰块,降低图像二值化之后噪点过多的问题
  操作可以填充二值图像中孔洞区域,形成完整的闭合区域连通组件
  顶帽操作有时候对于我们提取图像中微小部分特别有用
cv.inpaint()
  图像修复
cv.findHomography()
cv.warpPerspective()
  透视变换
cv.kmeans()
  KMeans数据分类
cv.QRCodeDetector()
cv.QRCodeDetector.detectAndDecode()
  二维码检测与识别

3.PIL库接口

Image.fromarray()
  将numpy图像转Image
ImageFont.truetype("china.ttf", size=30)
  加载图像字体库
ImageDraw.Draw()
  绘图
draw.text()
  图像上添加水印

到此这篇关于基于python图像处理API的使用示例的文章就介绍到这了,更多相关python 图像处理API内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python实现巡检系统(solaris)示例
Apr 02 Python
Python实现线程池代码分享
Jun 21 Python
Python使用分布式锁的代码演示示例
Jul 30 Python
python爬虫自动创建文件夹的功能
Aug 01 Python
Python中时间datetime的处理与转换用法总结
Feb 18 Python
解决Django 在ForeignKey中出现 non-nullable field错误的问题
Aug 06 Python
Django使用Jinja2模板引擎的示例代码
Aug 09 Python
Python+OpenCV实现将图像转换为二进制格式
Jan 09 Python
pandas读取csv文件提示不存在的解决方法及原因分析
Apr 21 Python
selenium学习教程之定位以及切换frame(iframe)
Jan 04 Python
Django中如何用xlwt生成表格的方法步骤
Jan 31 Python
关于python中模块和重载的问题
Nov 02 Python
解决json中ensure_ascii=False的问题
Apr 03 #Python
基于Python的OCR实现示例
Apr 03 #Python
Python %r和%s区别代码实例解析
Apr 03 #Python
解决flask接口返回的内容中文乱码的问题
Apr 03 #Python
使用python批量转换文件编码为UTF-8的实现
Apr 03 #Python
Python sql注入 过滤字符串的非法字符实例
Apr 03 #Python
python传到前端的数据,双引号被转义的问题
Apr 03 #Python
You might like
php中解析带中文字符的url函数分享
2015/01/20 PHP
WIN8.1下搭建PHP5.6环境
2015/04/29 PHP
PHP实现文件上传下载实例
2016/10/18 PHP
解析 thinkphp 框架中的部分方法
2017/05/07 PHP
Alliance vs Liquid BO3 第一场2.13
2021/03/10 DOTA
基于jquery的loading效果实现代码
2010/11/05 Javascript
8个超棒的学习 jQuery 的网站 推荐收藏
2011/04/02 Javascript
获取数组中最大最小值方法js代码(自写)
2013/08/12 Javascript
Javascript中的关键字和保留字整理
2014/10/16 Javascript
深入理解JavaScript系列(45):代码复用模式(避免篇)详解
2015/03/04 Javascript
JavaScript中Number.NEGATIVE_INFINITY值的使用详解
2015/06/05 Javascript
纯JS实现本地图片预览的方法
2015/07/31 Javascript
JavaScript判断表单为空及获取焦点的方法
2016/02/12 Javascript
jQuery插件ajaxfileupload.js实现上传文件
2020/10/23 Javascript
AngularJS  $modal弹出框实例代码
2016/08/24 Javascript
详解nodejs模板引擎制作
2017/06/14 NodeJs
js实现canvas保存图片为png格式并下载到本地的方法
2017/08/31 Javascript
jQuery获取复选框选中的当前行的某个字段的值
2017/09/15 jQuery
js中事件对象和事件委托的介绍
2019/01/21 Javascript
jquery操作select常见方法大全【7种情况】
2019/05/28 jQuery
微信小程序实现左滑动删除效果
2020/03/30 Javascript
如何HttpServletRequest文件对象并储存
2020/08/14 Javascript
Python简单遍历字典及删除元素的方法
2016/09/18 Python
关于python pyqt5安装失败问题的解决方法
2017/08/08 Python
基于python实现百度翻译功能
2019/05/09 Python
Python使用Numpy模块读取文件并绘制图片
2020/05/13 Python
python3通过qq邮箱发送邮件以及附件
2020/05/20 Python
python设置中文界面实例方法
2020/10/27 Python
毕业生求职简历的自我评价
2013/10/23 职场文书
十佳教师事迹材料
2014/01/11 职场文书
党支部公开承诺书
2014/03/28 职场文书
韩语专业职业生涯规划范文:成功之路就在我们脚下
2014/09/11 职场文书
2015年学校图书室工作总结
2015/05/19 职场文书
2015年教研工作总结
2015/05/23 职场文书
Python time库的时间时钟处理
2021/05/02 Python
JavaScript小技巧带你提升你的代码技能
2021/09/15 Javascript