Posted in SQL Server onFebruary 28, 2022
卡口转换率
将数据导入hive,通过SparkSql编写sql,实现不同业务的数据计算实现,主要讲述车辆卡口转换率,卡口转化率:主要计算不同卡口下车辆之间的流向,求出之间的转换率。
1、查出每个地区下每个路段下的车流量
select
car,
monitor_id,
action_time,
ROW_NUMBER () OVER (PARTITION by car
ORDER by
action_time) as n1
FROM
traffic.hive_flow_action
此结果做为表1,方便后面错位连接使用
2、通过错位连接获取每辆车的行车记录
通过表1的结果,与自身进行错位链接,并以车牌为分区,拼接经过卡口的过程
(select
t1.car,
t1.monitor_id,
concat(t1.monitor_id,
"->",
t2.monitor_id) as way
from
(
select
car,
monitor_id,
action_time,
ROW_NUMBER () OVER (PARTITION by car
ORDER by
action_time) as n1
FROM
traffic.hive_flow_action) t1
left join (
select
car,
monitor_id,
action_time,
ROW_NUMBER () OVER (PARTITION by car
ORDER by
action_time) as n1
FROM
traffic.hive_flow_action) t2 on
t1.car = t2.car
and t1.n1 = t2.n1-1
where
t2.action_time is not null)
获取到每辆车的一个行车记录,经过的卡口
3、获取行车过程中的车辆数
获取卡口1~卡口2,…等的车辆数有哪些,即拿上面的行车记录字段进行分区在进行统计
(select
s1.way,
COUNT(1) sumCar
from
--行车过程
(select
t1.car,
t1.monitor_id,
concat(t1.monitor_id,
"->",
t2.monitor_id) as way
from
(
select
car,
monitor_id,
action_time,
ROW_NUMBER () OVER (PARTITION by car
ORDER by
action_time) as n1
FROM
traffic.hive_flow_action) t1
left join (
select
car,
monitor_id,
action_time,
ROW_NUMBER () OVER (PARTITION by car
ORDER by
action_time) as n1
FROM
traffic.hive_flow_action) t2 on
t1.car = t2.car
and t1.n1 = t2.n1-1
where
t2.action_time is not null)s1
group by way)
4、获取每个卡口的总车辆数
获取每个卡口最初的车辆数,方便后面拿行车轨迹车辆数/总车辆数,得出卡口之间的转换率
select
monitor_id ,
COUNT(1) sumall
from
traffic.hive_flow_action
group by
monitor_id
5、求出卡口之间的转换率
select
s2.way,
s2.sumCar / s3.sumall zhl
from
(
select
s1.way,
COUNT(1) sumCar
from
--行车过程
(
select
t1.car,
t1.monitor_id,
concat(t1.monitor_id,
"->",
t2.monitor_id) as way
from
(
select
car,
monitor_id,
action_time,
ROW_NUMBER () OVER (PARTITION by car
ORDER by
action_time) as n1
FROM
traffic.hive_flow_action) t1
left join (
select
car,
monitor_id,
action_time,
ROW_NUMBER () OVER (PARTITION by car
ORDER by
action_time) as n1
FROM
traffic.hive_flow_action) t2 on
t1.car = t2.car
and t1.n1 = t2.n1-1
where
t2.action_time is not null)s1
group by
way)s2
left join
--每个卡口总车数
(
select
monitor_id ,
COUNT(1) sumall
from
traffic.hive_flow_action
group by
monitor_id) s3 on
split(s2.way,
"->")[0]= s3.monitor_id
到此这篇关于使用SQL实现车流量的计算的示例代码的文章就介绍到这了,更多相关SQL 车流量内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!
使用SQL实现车流量的计算的示例代码
- Author -
每日小新- Original Sources -
声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@