如何使用Python对NetCDF数据做空间相关分析


Posted in Python onApril 21, 2021

引言:我一直想理解空间相关分析的计算思维,于是今天又拿起Python脚本和数据来做练习。首先需要说明的是,这次实验的数据和Python脚本均来自于[好久不见]大佬,在跟大佬说明之后,允许我写到公众号来与大家共享,在此对大佬的指点表示感谢,这次实验的脚本可在气象家园或简书app(如果没记错的话)搜索到这次实验的相关内容,也可以微信或者后台发消息给我获取。在此之前我觉得自己还没理解这个方法的计算思维,检验的标准就是我能否迅速运用到其他方面。于是今天又重新回来温习一遍,我把自己的理解与大伙共同交流。

首先,数据的格式是NetCDF(.nc)数据,两个数据分别是[哈德来中心海温sst数据,pc数据是对东太平洋SSTA做的EOF获取]。知道数据信息之后我们就准备开始去运行程序。原始脚本包括了回归分析和相关分析两部分,但是今天我做了空间相关分析这一部分,有兴趣的可以到[好久不见]大佬的气象家园阅读喔!如果还没有安装Cartopy包的话请在后台联系我喔

为了方便理解每一步,我选择去Jupyter运行,因为可以一段一段程序的运行,这是比较方便的。绘图部分并不是很难,关键还是在于数据预处理部分。

空间相关分析的脚本如下:

import numpy as np #数值计算用,如相关系数
import xarray as xr #读取.nc文件用
from sklearn.feature_selection import f_regression #做显著性检验
import matplotlib.pyplot as plt #绘制和展示图形用
import cartopy.crs as ccrs #绘制地图用,如果没有安装好的话,请在后台联系我
import cartopy.feature as cfeature #添加一些矢量用,这里没用到,因为我没数据
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter #经纬度格式设置
import cmaps #ncl的color,如果没有的话,请联系我,也可以在气象家园找到

#使用上下文管理器读取.nc数据,并提取数据中的变量,可以提前用NASA的panoply这个软件查看.nc信息
with xr.open_dataset(r'D:\inuyasha\codeX\codeLEARN\sst.DJF.mean.anom.nc') as f1:
      pre = f1['sst_anom'][:-1, :, :]  # 三维数据全取,时间,纬度+经度
      lat, lon = f1['lat'], f1['lon'] #提取经纬度,后面格网化需要用到
pre2d = np.array(pre).reshape(pre.shape[0], pre.shape[1]*pre.shape[2])
#0表示行个数,1列代表的个数,2经度代表个数
with xr.open_dataset(r'D:\inuyasha\codeX\codeLEARN\pc.DJF.sst.nc') as f2:
      pc = f2['pc'][0, :]

# 相关系数计算
pre_cor = np.corrcoef(pre2d.T, pc)[:-1, -1].reshape(len(lat), len(lon))

# 做显著性检验
pre_cor_sig = f_regression(np.nan_to_num(pre2d), pc)[1].reshape(len(lat), len(lon))#用0代替NaN
area = np.where(pre_cor_sig < 0.05)
# numpy的作用又来了 
nx, ny = np.meshgrid(lon, lat)  
# 格网化经纬度,打印出来看看就知道为什么要这么做了
plt.figure(figsize=(16, 8)) #创建一个空画布
#让colorbar字体设置为新罗马字符
plt.rcParams['font.family'] = 'Times New Roman'
plt.rcParams['font.size'] = 16

ax2 = plt.subplot(projection=ccrs.PlateCarree(central_longitude=180))
# 在画布上绘图,这个叫axes,这不是坐标轴喔
ax2.coastlines(lw=0.4)
ax2.set_global()
c2 = ax2.contourf(nx, ny, pre_cor, extend='both', cmap=cmaps.nrl_sirkes, transform=ccrs.PlateCarree())
plt.colorbar(c2,fraction=0.05,orientation='horizontal', shrink=0.4, pad=0.06)
# extend关键字设置colorbar的形状,both为两端尖的,pad是距离主图的距离,其他参数web搜索

# 显著性打点
sig2 = ax2.scatter(nx[area], ny[area], marker='+', s=1, c='k', alpha=0.6, transform=ccrs.PlateCarree())
# 凸显显著性区域
plt.title('Correlation Analysis', fontdict={'family' : 'Times New Roman', 'size'   : 16})
#标题字体也修改为新罗马字符,数字和因为建议都用新罗马字符
ax2.set_xticks(np.arange(0, 361, 30),crs=ccrs.PlateCarree())
# 经度范围设置,nunpy的作用这不就又来了嘛
plt.xticks(fontproperties = 'Times New Roman',size=16) #修改xy刻度字体为新罗马字符
plt.yticks(fontproperties = 'Times New Roman',size=16)
ax2.set_yticks(np.arange(-90, 90, 15),crs=ccrs.PlateCarree())
# 设置y
ax2.xaxis.set_major_formatter(LongitudeFormatter(zero_direction_label = False))#经度0度不加东西
ax2.yaxis.set_major_formatter(LatitudeFormatter())
# 设置经纬度格式,就是多少度显示那样的,而不是一些数字
ax2.set_extent([-178, 178, -70, 70], crs=ccrs.PlateCarree())
# 设置空间范围
plt.grid(color='k')
# 画一个网格吧
plt.show()
# 显示出图形

那么就运行看看效果吧

如何使用Python对NetCDF数据做空间相关分析

如何使用Python对NetCDF数据做空间相关分析

如果觉得这个color不喜欢的话,就换一下ncl的来吧,ncl的颜色多而漂亮,喜欢啥就换啥

如何使用Python对NetCDF数据做空间相关分析

如何使用Python对NetCDF数据做空间相关分析

想要理解这个方法的计算思维,有必要观察原始数据和数据处理之后的样式,理解了数据样式之后可能更有助于我们理解整个程序

import numpy as np
import xarray as xr
from sklearn.feature_selection import f_regression
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cfeature
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
import cmaps

with xr.open_dataset(r'D:\inuyasha\codeX\codeLEARN\sst.DJF.mean.anom.nc') as f1:
      pre = f1['sst_anom'][:-1, :, :]  # 三维数据全取,时间,纬度+经度
      lat, lon = f1['lat'], f1['lon']
pre2d = np.array(pre).reshape(pre.shape[0], pre.shape[1]*pre.shape[2])#0行代表的个数,1纬度,2经度
#pre2d.shape是一个39行,16020列的矩阵,T之后就变为了16020行,39列

with xr.open_dataset(r'D:\inuyasha\codeX\codeLEARN\pc.DJF.sst.nc') as f2:
      pc = f2['pc'][0, :]
#pc是一个39行的数组

# # 相关系数
pre_cor = np.corrcoef(pre2d.T, pc)[:-1, -1].reshape(len(lat), len(lon))
#pre_cor.shape,(16020,)->reshape(89,180)
# # 显著性检验

# pre_cor_sig = f_regression(np.nan_to_num(pre2d), pc)[1].reshape(len(lat), len(lon))#用0代替NaN
# area = np.where(pre_cor_sig < 0.05)

nx, ny = np.meshgrid(lon, lat)  # 格网化
nx,ny

如何使用Python对NetCDF数据做空间相关分析

看看格网化后的经纬度多规范啊。画张图来看看可能也会直观一些。

如何使用Python对NetCDF数据做空间相关分析

好吧,今天的分享就到这里了,理解了这个计算思维,能更好地迁移运用到其他研究方面,如果还没有安装Cartopy包的话请在后台联系我喔,如果需要测试数据和脚本请在后台联系我,当然也可以去[好久不见]大佬的主页。如果觉得这次分享不错的话,还请老铁们点个赞,多多分享,欢迎交流学习,感谢各位!

原始资料:

http://bbs.06climate.com/forum.php?mod=viewthread&tid=92816&highlight=%CF%D4%D6%F8%D0%D4%BC%EC%D1%E9%2B%CF%E0%B9%D8%B7%D6%CE%F6

以上就是如何使用Python对NetCDF数据做空间相关分析的详细内容,更多关于Python对NetCDF数据做空间分析的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
python实现简单的计时器功能函数
Mar 14 Python
python使用装饰器和线程限制函数执行时间的方法
Apr 18 Python
探究Python中isalnum()方法的使用
May 18 Python
使用python检测主机存活端口及检查存活主机
Oct 12 Python
python虚拟环境的安装配置图文教程
Oct 20 Python
Python中存取文件的4种不同操作
Jul 02 Python
django解决跨域请求的问题详解
Jan 20 Python
余弦相似性计算及python代码实现过程解析
Sep 18 Python
使用Python串口实时显示数据并绘图的例子
Dec 26 Python
Python安装whl文件过程图解
Feb 18 Python
如何在python中实现ECDSA你知道吗
Nov 23 Python
python实现简单倒计时功能
python Polars库的使用简介
python基础之匿名函数详解
Apr 21 #Python
Python基础之字符串格式化详解
Apr 21 #Python
python 自动刷新网页的两种方法
python实现Thrift服务端的方法
python基础之while循环语句的使用
You might like
PHP VS ASP
2006/10/09 PHP
使用VisualStudio开发php的图文设置方法
2010/08/21 PHP
PHP加密扩展库Mcrypt安装和实例
2013/11/10 PHP
Zend Framework 2.0事件管理器(The EventManager)入门教程
2014/08/11 PHP
PHP中的命名空间相关概念浅析
2015/01/22 PHP
Smarty分页实现方法完整实例
2016/05/11 PHP
php实现JWT(json web token)鉴权实例详解
2019/11/05 PHP
javascript中window.event事件用法详解
2012/12/11 Javascript
JavaScript 实现类的多种方法实例
2013/05/01 Javascript
JavaScript设置IFrame高度自适应(兼容各主流浏览器)
2013/06/05 Javascript
浅析Javascript中“==”与“===”的区别
2014/12/23 Javascript
浅析JS运动
2015/12/28 Javascript
如何在JS中实现相互转换XML和JSON
2016/07/19 Javascript
JavaScript将DOM事件处理程序封装为event.js 出现的低级错误问题
2016/08/03 Javascript
微信小程序去哪里找 小程序到底如何使用(附小程序名单)
2017/01/09 Javascript
webpack处理 css\less\sass 样式的方法
2017/08/21 Javascript
JS实现电商放大镜效果
2017/08/24 Javascript
Vue项目中添加锁屏功能实现思路
2018/06/29 Javascript
JS Array.from()将伪数组转换成数组的方法示例
2020/03/23 Javascript
jquery自定义组件实例详解
2020/12/31 jQuery
Python实现判断字符串中包含某个字符的判断函数示例
2018/01/08 Python
记一次django内存异常排查及解决方法
2020/08/07 Python
使用python库xlsxwriter库来输出各种xlsx文件的示例
2020/09/01 Python
在pycharm中文件取消用 pytest模式打开的操作
2020/09/01 Python
Sephora丝芙兰印尼官方网站:购买化妆品和护肤品
2018/07/02 全球购物
JD Sports芬兰:英国领先的运动鞋和运动服饰零售商
2018/11/16 全球购物
创业计划书怎样才能打动风投
2014/01/01 职场文书
小学五年级学生评语
2014/04/22 职场文书
基层党建工作宣传标语
2014/06/24 职场文书
2015年员工试用期工作总结
2014/12/12 职场文书
2016应届大学生自荐信模板
2016/01/28 职场文书
原来闭幕词是这样写的呀!
2019/07/01 职场文书
Python文件的操作示例的详细讲解
2021/04/08 Python
Python实现排序方法常见的四种
2021/07/15 Python
Python通过loop.run_in_executor执行同步代码 同步变为异步
2022/04/11 Python
MySQL存储过程及语法详解
2022/08/05 MySQL