如何使用Python对NetCDF数据做空间相关分析


Posted in Python onApril 21, 2021

引言:我一直想理解空间相关分析的计算思维,于是今天又拿起Python脚本和数据来做练习。首先需要说明的是,这次实验的数据和Python脚本均来自于[好久不见]大佬,在跟大佬说明之后,允许我写到公众号来与大家共享,在此对大佬的指点表示感谢,这次实验的脚本可在气象家园或简书app(如果没记错的话)搜索到这次实验的相关内容,也可以微信或者后台发消息给我获取。在此之前我觉得自己还没理解这个方法的计算思维,检验的标准就是我能否迅速运用到其他方面。于是今天又重新回来温习一遍,我把自己的理解与大伙共同交流。

首先,数据的格式是NetCDF(.nc)数据,两个数据分别是[哈德来中心海温sst数据,pc数据是对东太平洋SSTA做的EOF获取]。知道数据信息之后我们就准备开始去运行程序。原始脚本包括了回归分析和相关分析两部分,但是今天我做了空间相关分析这一部分,有兴趣的可以到[好久不见]大佬的气象家园阅读喔!如果还没有安装Cartopy包的话请在后台联系我喔

为了方便理解每一步,我选择去Jupyter运行,因为可以一段一段程序的运行,这是比较方便的。绘图部分并不是很难,关键还是在于数据预处理部分。

空间相关分析的脚本如下:

import numpy as np #数值计算用,如相关系数
import xarray as xr #读取.nc文件用
from sklearn.feature_selection import f_regression #做显著性检验
import matplotlib.pyplot as plt #绘制和展示图形用
import cartopy.crs as ccrs #绘制地图用,如果没有安装好的话,请在后台联系我
import cartopy.feature as cfeature #添加一些矢量用,这里没用到,因为我没数据
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter #经纬度格式设置
import cmaps #ncl的color,如果没有的话,请联系我,也可以在气象家园找到

#使用上下文管理器读取.nc数据,并提取数据中的变量,可以提前用NASA的panoply这个软件查看.nc信息
with xr.open_dataset(r'D:\inuyasha\codeX\codeLEARN\sst.DJF.mean.anom.nc') as f1:
      pre = f1['sst_anom'][:-1, :, :]  # 三维数据全取,时间,纬度+经度
      lat, lon = f1['lat'], f1['lon'] #提取经纬度,后面格网化需要用到
pre2d = np.array(pre).reshape(pre.shape[0], pre.shape[1]*pre.shape[2])
#0表示行个数,1列代表的个数,2经度代表个数
with xr.open_dataset(r'D:\inuyasha\codeX\codeLEARN\pc.DJF.sst.nc') as f2:
      pc = f2['pc'][0, :]

# 相关系数计算
pre_cor = np.corrcoef(pre2d.T, pc)[:-1, -1].reshape(len(lat), len(lon))

# 做显著性检验
pre_cor_sig = f_regression(np.nan_to_num(pre2d), pc)[1].reshape(len(lat), len(lon))#用0代替NaN
area = np.where(pre_cor_sig < 0.05)
# numpy的作用又来了 
nx, ny = np.meshgrid(lon, lat)  
# 格网化经纬度,打印出来看看就知道为什么要这么做了
plt.figure(figsize=(16, 8)) #创建一个空画布
#让colorbar字体设置为新罗马字符
plt.rcParams['font.family'] = 'Times New Roman'
plt.rcParams['font.size'] = 16

ax2 = plt.subplot(projection=ccrs.PlateCarree(central_longitude=180))
# 在画布上绘图,这个叫axes,这不是坐标轴喔
ax2.coastlines(lw=0.4)
ax2.set_global()
c2 = ax2.contourf(nx, ny, pre_cor, extend='both', cmap=cmaps.nrl_sirkes, transform=ccrs.PlateCarree())
plt.colorbar(c2,fraction=0.05,orientation='horizontal', shrink=0.4, pad=0.06)
# extend关键字设置colorbar的形状,both为两端尖的,pad是距离主图的距离,其他参数web搜索

# 显著性打点
sig2 = ax2.scatter(nx[area], ny[area], marker='+', s=1, c='k', alpha=0.6, transform=ccrs.PlateCarree())
# 凸显显著性区域
plt.title('Correlation Analysis', fontdict={'family' : 'Times New Roman', 'size'   : 16})
#标题字体也修改为新罗马字符,数字和因为建议都用新罗马字符
ax2.set_xticks(np.arange(0, 361, 30),crs=ccrs.PlateCarree())
# 经度范围设置,nunpy的作用这不就又来了嘛
plt.xticks(fontproperties = 'Times New Roman',size=16) #修改xy刻度字体为新罗马字符
plt.yticks(fontproperties = 'Times New Roman',size=16)
ax2.set_yticks(np.arange(-90, 90, 15),crs=ccrs.PlateCarree())
# 设置y
ax2.xaxis.set_major_formatter(LongitudeFormatter(zero_direction_label = False))#经度0度不加东西
ax2.yaxis.set_major_formatter(LatitudeFormatter())
# 设置经纬度格式,就是多少度显示那样的,而不是一些数字
ax2.set_extent([-178, 178, -70, 70], crs=ccrs.PlateCarree())
# 设置空间范围
plt.grid(color='k')
# 画一个网格吧
plt.show()
# 显示出图形

那么就运行看看效果吧

如何使用Python对NetCDF数据做空间相关分析

如何使用Python对NetCDF数据做空间相关分析

如果觉得这个color不喜欢的话,就换一下ncl的来吧,ncl的颜色多而漂亮,喜欢啥就换啥

如何使用Python对NetCDF数据做空间相关分析

如何使用Python对NetCDF数据做空间相关分析

想要理解这个方法的计算思维,有必要观察原始数据和数据处理之后的样式,理解了数据样式之后可能更有助于我们理解整个程序

import numpy as np
import xarray as xr
from sklearn.feature_selection import f_regression
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cfeature
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
import cmaps

with xr.open_dataset(r'D:\inuyasha\codeX\codeLEARN\sst.DJF.mean.anom.nc') as f1:
      pre = f1['sst_anom'][:-1, :, :]  # 三维数据全取,时间,纬度+经度
      lat, lon = f1['lat'], f1['lon']
pre2d = np.array(pre).reshape(pre.shape[0], pre.shape[1]*pre.shape[2])#0行代表的个数,1纬度,2经度
#pre2d.shape是一个39行,16020列的矩阵,T之后就变为了16020行,39列

with xr.open_dataset(r'D:\inuyasha\codeX\codeLEARN\pc.DJF.sst.nc') as f2:
      pc = f2['pc'][0, :]
#pc是一个39行的数组

# # 相关系数
pre_cor = np.corrcoef(pre2d.T, pc)[:-1, -1].reshape(len(lat), len(lon))
#pre_cor.shape,(16020,)->reshape(89,180)
# # 显著性检验

# pre_cor_sig = f_regression(np.nan_to_num(pre2d), pc)[1].reshape(len(lat), len(lon))#用0代替NaN
# area = np.where(pre_cor_sig < 0.05)

nx, ny = np.meshgrid(lon, lat)  # 格网化
nx,ny

如何使用Python对NetCDF数据做空间相关分析

看看格网化后的经纬度多规范啊。画张图来看看可能也会直观一些。

如何使用Python对NetCDF数据做空间相关分析

好吧,今天的分享就到这里了,理解了这个计算思维,能更好地迁移运用到其他研究方面,如果还没有安装Cartopy包的话请在后台联系我喔,如果需要测试数据和脚本请在后台联系我,当然也可以去[好久不见]大佬的主页。如果觉得这次分享不错的话,还请老铁们点个赞,多多分享,欢迎交流学习,感谢各位!

原始资料:

http://bbs.06climate.com/forum.php?mod=viewthread&tid=92816&highlight=%CF%D4%D6%F8%D0%D4%BC%EC%D1%E9%2B%CF%E0%B9%D8%B7%D6%CE%F6

以上就是如何使用Python对NetCDF数据做空间相关分析的详细内容,更多关于Python对NetCDF数据做空间分析的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
python通过cookie模拟已登录状态的初步研究
Nov 09 Python
Python正则表达式教程之二:捕获篇
Mar 02 Python
Python基于回溯法解决01背包问题实例
Dec 06 Python
python实现Dijkstra算法的最短路径问题
Jun 21 Python
python re.sub()替换正则的匹配内容方法
Jul 22 Python
简单了解Django ORM常用字段类型及参数配置
Jan 07 Python
通过python实现windows桌面截图代码实例
Jan 17 Python
Numpy 理解ndarray对象的示例代码
Apr 03 Python
Python ellipsis 的用法详解
Nov 20 Python
Python用摘要算法生成token及检验token的示例代码
Dec 01 Python
使用Python判断一个文件是否被占用的方法教程
Dec 16 Python
基于tensorflow权重文件的解读
May 26 Python
python实现简单倒计时功能
python Polars库的使用简介
python基础之匿名函数详解
Apr 21 #Python
Python基础之字符串格式化详解
Apr 21 #Python
python 自动刷新网页的两种方法
python实现Thrift服务端的方法
python基础之while循环语句的使用
You might like
PHP下编码转换函数mb_convert_encoding与iconv的使用说明
2009/12/16 PHP
div li的多行多列 无刷新分页示例代码
2013/10/16 PHP
PHP模板引擎Smarty中变量的使用方法示例
2016/04/11 PHP
Javascript 的addEventListener()及attachEvent()区别分析
2009/05/21 Javascript
JQuery 选项卡效果(JS与HTML的分离)
2010/04/01 Javascript
Javascript下判断是否为闰年的Datetime包
2010/10/26 Javascript
禁用键盘上的(全局)指定键兼容iE、Chrome、火狐
2013/05/14 Javascript
Nodejs极简入门教程(三):进程
2014/10/27 NodeJs
AngularJS基础 ng-value 指令简单示例
2016/08/03 Javascript
AngularJS入门教程之链接与图片模板详解
2016/08/19 Javascript
js 提交form表单和设置form表单请求路径的实现方法
2016/10/25 Javascript
AngularJS constant和value区别详解
2017/02/28 Javascript
浅谈angular.copy() 深拷贝
2017/09/14 Javascript
vue-cli与webpack处理静态资源的方法及webpack打包的坑
2018/05/15 Javascript
layui prompt 设置允许空白提交的方法
2019/09/24 Javascript
[51:44]2018DOTA2亚洲邀请赛 4.3 突围赛 Optic vs iG 第二场
2018/04/04 DOTA
你应该知道的python列表去重方法
2017/01/17 Python
numpy 计算两个数组重复程度的方法
2018/11/07 Python
Python发送邮件测试报告操作实例详解
2018/12/08 Python
python web自制框架之接受url传递过来的参数实例
2018/12/17 Python
python单例模式原理与创建方法实例分析
2019/10/26 Python
Django ModelForm组件原理及用法详解
2020/10/12 Python
英国知名小木屋定制网站:Tiger Sheds
2020/03/06 全球购物
英语专业应届生求职信范文
2013/11/15 职场文书
普通院校学生的自荐信
2013/11/27 职场文书
如何填写个人简历自我评价
2013/12/10 职场文书
商场经理竞聘演讲稿
2014/01/01 职场文书
小学新学期教师寄语
2014/01/18 职场文书
《最可爱的人》教学反思
2014/02/14 职场文书
理财计划书
2014/08/14 职场文书
干部对照检查材料范文
2014/08/26 职场文书
单位租房协议书样本
2014/10/30 职场文书
2019大学生社会实践报告汇总
2019/08/16 职场文书
MySQL表的增删改查基础教程
2021/04/07 MySQL
如何用Node.js编写内存效率高的应用程序
2021/04/30 Javascript
前端canvas中物体边框和控制点的实现示例
2022/08/05 Javascript