如何使用Python对NetCDF数据做空间相关分析


Posted in Python onApril 21, 2021

引言:我一直想理解空间相关分析的计算思维,于是今天又拿起Python脚本和数据来做练习。首先需要说明的是,这次实验的数据和Python脚本均来自于[好久不见]大佬,在跟大佬说明之后,允许我写到公众号来与大家共享,在此对大佬的指点表示感谢,这次实验的脚本可在气象家园或简书app(如果没记错的话)搜索到这次实验的相关内容,也可以微信或者后台发消息给我获取。在此之前我觉得自己还没理解这个方法的计算思维,检验的标准就是我能否迅速运用到其他方面。于是今天又重新回来温习一遍,我把自己的理解与大伙共同交流。

首先,数据的格式是NetCDF(.nc)数据,两个数据分别是[哈德来中心海温sst数据,pc数据是对东太平洋SSTA做的EOF获取]。知道数据信息之后我们就准备开始去运行程序。原始脚本包括了回归分析和相关分析两部分,但是今天我做了空间相关分析这一部分,有兴趣的可以到[好久不见]大佬的气象家园阅读喔!如果还没有安装Cartopy包的话请在后台联系我喔

为了方便理解每一步,我选择去Jupyter运行,因为可以一段一段程序的运行,这是比较方便的。绘图部分并不是很难,关键还是在于数据预处理部分。

空间相关分析的脚本如下:

import numpy as np #数值计算用,如相关系数
import xarray as xr #读取.nc文件用
from sklearn.feature_selection import f_regression #做显著性检验
import matplotlib.pyplot as plt #绘制和展示图形用
import cartopy.crs as ccrs #绘制地图用,如果没有安装好的话,请在后台联系我
import cartopy.feature as cfeature #添加一些矢量用,这里没用到,因为我没数据
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter #经纬度格式设置
import cmaps #ncl的color,如果没有的话,请联系我,也可以在气象家园找到

#使用上下文管理器读取.nc数据,并提取数据中的变量,可以提前用NASA的panoply这个软件查看.nc信息
with xr.open_dataset(r'D:\inuyasha\codeX\codeLEARN\sst.DJF.mean.anom.nc') as f1:
      pre = f1['sst_anom'][:-1, :, :]  # 三维数据全取,时间,纬度+经度
      lat, lon = f1['lat'], f1['lon'] #提取经纬度,后面格网化需要用到
pre2d = np.array(pre).reshape(pre.shape[0], pre.shape[1]*pre.shape[2])
#0表示行个数,1列代表的个数,2经度代表个数
with xr.open_dataset(r'D:\inuyasha\codeX\codeLEARN\pc.DJF.sst.nc') as f2:
      pc = f2['pc'][0, :]

# 相关系数计算
pre_cor = np.corrcoef(pre2d.T, pc)[:-1, -1].reshape(len(lat), len(lon))

# 做显著性检验
pre_cor_sig = f_regression(np.nan_to_num(pre2d), pc)[1].reshape(len(lat), len(lon))#用0代替NaN
area = np.where(pre_cor_sig < 0.05)
# numpy的作用又来了 
nx, ny = np.meshgrid(lon, lat)  
# 格网化经纬度,打印出来看看就知道为什么要这么做了
plt.figure(figsize=(16, 8)) #创建一个空画布
#让colorbar字体设置为新罗马字符
plt.rcParams['font.family'] = 'Times New Roman'
plt.rcParams['font.size'] = 16

ax2 = plt.subplot(projection=ccrs.PlateCarree(central_longitude=180))
# 在画布上绘图,这个叫axes,这不是坐标轴喔
ax2.coastlines(lw=0.4)
ax2.set_global()
c2 = ax2.contourf(nx, ny, pre_cor, extend='both', cmap=cmaps.nrl_sirkes, transform=ccrs.PlateCarree())
plt.colorbar(c2,fraction=0.05,orientation='horizontal', shrink=0.4, pad=0.06)
# extend关键字设置colorbar的形状,both为两端尖的,pad是距离主图的距离,其他参数web搜索

# 显著性打点
sig2 = ax2.scatter(nx[area], ny[area], marker='+', s=1, c='k', alpha=0.6, transform=ccrs.PlateCarree())
# 凸显显著性区域
plt.title('Correlation Analysis', fontdict={'family' : 'Times New Roman', 'size'   : 16})
#标题字体也修改为新罗马字符,数字和因为建议都用新罗马字符
ax2.set_xticks(np.arange(0, 361, 30),crs=ccrs.PlateCarree())
# 经度范围设置,nunpy的作用这不就又来了嘛
plt.xticks(fontproperties = 'Times New Roman',size=16) #修改xy刻度字体为新罗马字符
plt.yticks(fontproperties = 'Times New Roman',size=16)
ax2.set_yticks(np.arange(-90, 90, 15),crs=ccrs.PlateCarree())
# 设置y
ax2.xaxis.set_major_formatter(LongitudeFormatter(zero_direction_label = False))#经度0度不加东西
ax2.yaxis.set_major_formatter(LatitudeFormatter())
# 设置经纬度格式,就是多少度显示那样的,而不是一些数字
ax2.set_extent([-178, 178, -70, 70], crs=ccrs.PlateCarree())
# 设置空间范围
plt.grid(color='k')
# 画一个网格吧
plt.show()
# 显示出图形

那么就运行看看效果吧

如何使用Python对NetCDF数据做空间相关分析

如何使用Python对NetCDF数据做空间相关分析

如果觉得这个color不喜欢的话,就换一下ncl的来吧,ncl的颜色多而漂亮,喜欢啥就换啥

如何使用Python对NetCDF数据做空间相关分析

如何使用Python对NetCDF数据做空间相关分析

想要理解这个方法的计算思维,有必要观察原始数据和数据处理之后的样式,理解了数据样式之后可能更有助于我们理解整个程序

import numpy as np
import xarray as xr
from sklearn.feature_selection import f_regression
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cfeature
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
import cmaps

with xr.open_dataset(r'D:\inuyasha\codeX\codeLEARN\sst.DJF.mean.anom.nc') as f1:
      pre = f1['sst_anom'][:-1, :, :]  # 三维数据全取,时间,纬度+经度
      lat, lon = f1['lat'], f1['lon']
pre2d = np.array(pre).reshape(pre.shape[0], pre.shape[1]*pre.shape[2])#0行代表的个数,1纬度,2经度
#pre2d.shape是一个39行,16020列的矩阵,T之后就变为了16020行,39列

with xr.open_dataset(r'D:\inuyasha\codeX\codeLEARN\pc.DJF.sst.nc') as f2:
      pc = f2['pc'][0, :]
#pc是一个39行的数组

# # 相关系数
pre_cor = np.corrcoef(pre2d.T, pc)[:-1, -1].reshape(len(lat), len(lon))
#pre_cor.shape,(16020,)->reshape(89,180)
# # 显著性检验

# pre_cor_sig = f_regression(np.nan_to_num(pre2d), pc)[1].reshape(len(lat), len(lon))#用0代替NaN
# area = np.where(pre_cor_sig < 0.05)

nx, ny = np.meshgrid(lon, lat)  # 格网化
nx,ny

如何使用Python对NetCDF数据做空间相关分析

看看格网化后的经纬度多规范啊。画张图来看看可能也会直观一些。

如何使用Python对NetCDF数据做空间相关分析

好吧,今天的分享就到这里了,理解了这个计算思维,能更好地迁移运用到其他研究方面,如果还没有安装Cartopy包的话请在后台联系我喔,如果需要测试数据和脚本请在后台联系我,当然也可以去[好久不见]大佬的主页。如果觉得这次分享不错的话,还请老铁们点个赞,多多分享,欢迎交流学习,感谢各位!

原始资料:

http://bbs.06climate.com/forum.php?mod=viewthread&tid=92816&highlight=%CF%D4%D6%F8%D0%D4%BC%EC%D1%E9%2B%CF%E0%B9%D8%B7%D6%CE%F6

以上就是如何使用Python对NetCDF数据做空间相关分析的详细内容,更多关于Python对NetCDF数据做空间分析的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
pycharm 使用心得(五)断点调试
Jun 06 Python
Python使用urllib模块的urlopen超时问题解决方法
Nov 08 Python
python之matplotlib学习绘制动态更新图实例代码
Jan 23 Python
django多文件上传,form提交,多对多外键保存的实例
Aug 06 Python
Python类中的魔法方法之 __slots__原理解析
Aug 26 Python
python lambda表达式(匿名函数)写法解析
Sep 16 Python
Python帮你微信头像任意添加装饰别再@微信官方了
Sep 25 Python
Pytorch 的损失函数Loss function使用详解
Jan 02 Python
关于python 跨域处理方式详解
Mar 28 Python
Python爬虫爬取博客实现可视化过程解析
Jun 29 Python
使用python实现下载我们想听的歌曲,速度超快
Jul 09 Python
Python+OpenCV图像处理——图像二值化的实现
Oct 24 Python
python实现简单倒计时功能
python Polars库的使用简介
python基础之匿名函数详解
Apr 21 #Python
Python基础之字符串格式化详解
Apr 21 #Python
python 自动刷新网页的两种方法
python实现Thrift服务端的方法
python基础之while循环语句的使用
You might like
使用PHP批量生成随机用户名
2008/07/10 PHP
解析php中heredoc的使用方法
2013/06/17 PHP
PHP二维数组排序的3种方法和自定义函数分享
2014/04/09 PHP
php检索或者复制远程文件的方法
2015/03/13 PHP
PHP生成指定随机字符串的简单实现方法
2015/04/01 PHP
PHP仿微信发红包领红包效果
2016/10/30 PHP
PHP实现获取url地址中顶级域名的方法示例
2019/06/05 PHP
jValidate 基于jQuery的表单验证插件
2009/12/12 Javascript
使用jQuery.Validate进行客户端验证(初级篇) 不使用微软验证控件的理由
2010/06/28 Javascript
js获取网页可见区域、正文以及屏幕分辨率的高度
2014/05/15 Javascript
jQuery统计上传文件大小的方法
2015/01/24 Javascript
Nodejs学习笔记之入门篇
2015/04/16 NodeJs
javascript实现动态表头及表列的展现方法
2015/07/14 Javascript
不定义JQuery插件 不要说会JQuery
2016/03/07 Javascript
Bootstrap的fileinput插件实现多文件上传的方法
2016/09/05 Javascript
JavaScript实现url参数转成json形式
2016/09/25 Javascript
Vuejs 组件——props数据传递的实例代码
2017/03/07 Javascript
微信小程序中显示html格式内容的方法
2017/04/25 Javascript
Angular获取手机验证码实现移动端登录注册功能
2017/05/17 Javascript
Vue resource中的GET与POST请求的实例代码
2017/07/21 Javascript
Vue实现根据hash高亮选项卡
2019/05/27 Javascript
vue递归组件实战之简单树形控件实例代码
2019/08/27 Javascript
微信小程序HTTP接口请求封装代码实例
2019/09/05 Javascript
Python中join和split用法实例
2015/04/14 Python
python黑魔法之参数传递
2016/02/12 Python
教你使用python画一朵花送女朋友
2018/03/29 Python
python 与服务器的共享文件夹交互方法
2018/12/27 Python
全面解析CSS Media媒体查询使用操作(推荐)
2017/08/15 HTML / CSS
利用CSS3的线性渐变linear-gradient制作边框的示例
2016/06/02 HTML / CSS
Ellos丹麦:时尚和服装在线
2016/09/19 全球购物
捷克汽车配件和工具销售网站:TorriaCars
2018/02/26 全球购物
销售顾问的岗位职责
2013/11/13 职场文书
实习生单位鉴定意见
2013/12/04 职场文书
如何写通讯稿
2015/07/22 职场文书
2016基督教会圣诞节开幕词
2016/03/04 职场文书
Python Flask搭建yolov3目标检测系统详解流程
2021/11/07 Python