浅析Python与Mongodb数据库之间的操作方法


Posted in Python onJuly 01, 2019

MongoDB 是目前最流行的 NoSQL 数据库之一,使用的数据类型 BSON(类似 JSON)。

1. 安装Mongodb和pymongo

Mongodb的安装和配置

Mongodb的安装教程请网上搜索, 安装完成后,    进行以下配置过程:

1.1 创建目录, 该目录为Mongodb数据文件的存放目录:

*注: 本人使用的不是root用户, 所以修改目录的拥有者. *

sudo mkdir /data
sudo chown -R python:python /data
mkdir /data/db

1.2 分别执行命令:

第一条命令为指定端口和保存路径, 第二条为运行mongodb数据库.

mongod --port 27017 --dbpath /data/db
mongo --port 27017

1.3 安装pymongo

sudo pip3 install pymongo

2. 连接数据库、指定数据库、指定集合、插入数据:

mongodb存储数据以键值形式, 因此在Python中使用字段插入数据.

import pymongo
#连接mongodb
client = pymongo.MongoClient('mongodb://localhost:27017/')
#指定数据库
db = client.test4
#指定集合
collection = db.students
#数据
student1 = {
 'id': '201801',
 'name': 'Jack',
 'age': 20,
 'gender': 'male'
}
student2 = {
 'id': '201802',
 'name': 'Tom',
 'age': 22,
 'gender': 'male'
}
student3 = {
 'id': '201803',
 'name': 'Rose',
 'age': 21,
 'gender': 'female'
}
student4 = {
 'id': '201804',
 'name': 'Mike',
 'age': 20,
 'gender': 'female'
}
student5 = {
 'id': '201805',
 'name': 'Ray',
 'age': 20,
 'gender': 'female'
}
student6 = {
 'id': '201806',
 'name': 'Alan',
 'age': 21,
 'gender': 'male'
}
#插入一条数据
result1 = collection.insert_one(student1)
print(result1)
print(result1.inserted_id)
# #插入多条数据
result2 = collection.insert_many([student2, student3, student4, student5, student6])
print(result2)
print(result2.inserted_ids)

运行结果:

insert方法:

5b3a1942971951218d41c02b
[ObjectId('5b3a1942971951218d41c02c'), ObjectId('5b3a1942971951218d41c02d')]

官方推荐:

<pymongo.results.InsertOneResult object at 0x7fa4cc363ec8>
5b3a1942971951218d41c02e
<pymongo.results.InsertManyResult object at 0x7fa4cc363f08>
[ObjectId('5b3a1942971951218d41c02f'), ObjectId('5b3a1942971951218d41c030')]

3. 查询、计数、排序、偏移:

import pymongo
from bson.objectid import ObjectId
client = pymongo.MongoClient('mongodb://localhost:27017/')
db = client.test4
collection = db.students
#查询一条数据
print('单条数据','='*50)
result = collection.find_one({'name': 'Jack'})
print(result)
print('多条数据','='*50)
#查询多条数据
for res in collection.find({'age': {'$mod': [5, 0]}}):
 print(res)
#计数
print('计数','='*50)
count = collection.find({'age': {'$mod': [5, 0]}}).count()
print(count)
#排序
print('排序','='*50)
results = collection.find().sort('name', pymongo.ASCENDING) #升序, pymongo.DESCENDING为降序
print([result['name'] for result in results])
#偏移
print('偏移','='*50)
results = collection.find().sort('name', pymongo.ASCENDING).skip(2) #偏移2位,忽略前两个数据
print([result['name'] for result in results])
results = collection.find().sort('name', pymongo.ASCENDING).skip(2).limit(2) #只输出2个数据
print([result['name'] for result in results])
find({‘age': {'$mod': [5, 0]}}): 表示查找年龄取余5余0的值. 还有很多比较符号, 请百度.

运行结果:

单条数据 ==================================================
{'_id': ObjectId('5b3a1942971951218d41c02b'), 'id': '201801', 'name': 'Jack', 'age': 20, 'gender': 'male'}
多条数据 ==================================================
{'_id': ObjectId('5b3a1942971951218d41c02b'), 'id': '201801', 'name': 'Jack', 'age': 20, 'gender': 'male'}
{'_id': ObjectId('5b3a1942971951218d41c02e'), 'id': '201804', 'name': 'Mike', 'age': 20, 'gender': 'female'}
{'_id': ObjectId('5b3a1942971951218d41c02f'), 'id': '201805', 'name': 'Ray', 'age': 20, 'gender': 'female'}
计数 ==================================================
3
排序 ==================================================
['Alan', 'Jack', 'Mike', 'Ray', 'Rose', 'Tom']
偏移 ==================================================
['Mike', 'Ray', 'Rose', 'Tom']
['Mike', 'Ray']

4. 更新:

4.1  不使用$set更新数据:

import pymongo
from bson.objectid import ObjectId
client = pymongo.MongoClient('mongodb://localhost:27017/')
db = client.test4
collection = db.students
#修改
condition = {'name': 'Jack'}
student = collection.find_one(condition) #获得满足condition的数据
print('更新前: ', student)
student['age'] = 22 #修改年龄
result = collection.update(condition, student) #将修改后的student替换condition
print('更新后', collection.find_one(condition))
#更新的返回值
print(result) #ok=1代表执行成功, nModified代表影响的条数

运行结果:

更新前: {'_id': ObjectId('5b3a1942971951218d41c02b'), 'id': '201801', 'name': 'Jack', 'age': 20, 'gender': 'male'}
更新后 {'_id': ObjectId('5b3a1942971951218d41c02b'), 'id': '201801', 'name': 'Jack', 'age': 22, 'gender': 'male'}
{'ok': 1, 'nModified': 1, 'n': 1, 'updatedExisting': True}

4.2  使用$set更新数据:

import pymongo
from bson.objectid import ObjectId
client = pymongo.MongoClient('mongodb://localhost:27017/')
db = client.test4
collection = db.students
#使用$set更新
condition = {'name': 'Jack'}
student = collection.find_one(condition) #获得满足condition的数据
print('更新前: ', student)
student['age'] = 23 #修改年龄
result = collection.update(condition, {'$set': student}) #将修改后的student替换condition, $set为重点
print('更新后', collection.find_one(condition))
#更新的返回值
print(result) #ok=1代表执行成功, nModified代表影响的条数

运行结果:

更新前: {'_id': ObjectId('5b3a1942971951218d41c02b'), 'id': '201801', 'name': 'Jack', 'age': 22, 'gender': 'male'}
更新后 {'_id': ObjectId('5b3a1942971951218d41c02b'), 'id': '201801', 'name': 'Jack', 'age': 23, 'gender': 'male'}
{'ok': 1, 'nModified': 1, 'n': 1, 'updatedExisting': True}

比较使用和不适用$set更新数据, 发现此时并没有什么区别.

下面介绍区别所在:

4.3  区别

import pymongo
from bson.objectid import ObjectId
client = pymongo.MongoClient('mongodb://localhost:27017/')
db = client.test4
collection = db.students
#使用和不使用$set更新的区别
print('使用: ')
condition = {'name': 'Jack'}
student = collection.find_one(condition) #获得满足condition的数据
print('更新前: ', student)
student = {
 'id': '201803',
 'name': 'Jack',
 'age': 20,
 'gender': 'female',
 'mother': "Jack's mother"
}
result = collection.update(condition, {'$set': student}) #将修改后的student替换condition
print('更新后', collection.find_one(condition))
#更新的返回值
print(result) #ok=1代表执行成功, nModified代表影响的条数
#分割线
print()
print('='*20, '分割线', '='*20)
print()
print('不使用: ')
condition = {'name': 'Jack'}
student = collection.find_one(condition) #获得满足condition的数据
print('更新前: ', student)
student = {
 'id': '201803',
 'name': 'Jack',
 'age': 20,
 'gender': 'female',
 'father': "Jack's father"
}
result = collection.update(condition, student) #将修改后的student替换condition
print('更新后', collection.find_one(condition))
#更新的返回值
print(result) #ok=1代表执行成功, nModified代表影响的条数

运行结果:

使用:

更新前: {'_id': ObjectId('5b3a1942971951218d41c02b'), 'id': '201801', 'name': 'Jack', 'age': 23, 'gender': 'male'}
更新后 {'_id': ObjectId('5b3a1942971951218d41c02b'), 'id': '201803', 'name': 'Jack', 'age': 20, 'gender': 'female', 'mother': "Jack's mother"}
{'ok': 1, 'nModified': 1, 'n': 1, 'updatedExisting': True}

==================== 分割线 ====================

不使用: 
更新前: {'_id': ObjectId('5b3a1942971951218d41c02b'), 'id': '201803', 'name': 'Jack', 'age': 20, 'gender': 'female', 'mother': "Jack's mother"}
更新后 {'_id': ObjectId('5b3a1942971951218d41c02b'), 'id': '201803', 'name': 'Jack', 'age': 20, 'gender': 'female', 'father': "Jack's father"}
{'ok': 1, 'nModified': 1, 'n': 1, 'updatedExisting': True}

分析上面运行结果, 可以发现使用$set时, 若更新数据有原数据没有的字段, 则将该字段加到原数据上(上例为新增了mother字段), 而不会删除任何字段. 相反, 若不使用set时, 将从原数据中删除更新数据没有的字段, 再加上新增字段(上例为删除了mother字段, 新增了father字段. 也可以理解为将原数据完全替换为更新数据)

4.4  update_one和update_many的区别:

import pymongo
from bson.objectid import ObjectId
client = pymongo.MongoClient('mongodb://localhost:27017/')
db = client.test4
collection = db.students
#官方推荐使用
#update_one和update_many的区别
print('update_one: ')
condition = {'age': {'$gt': 20}}
result = collection.update_one(condition, {'$inc': {'age': 1}})
print(result)
print(result.matched_count, result.modified_count)
#分割线
print()
print('='*20, '分割线', '='*20)
print()
print('update_many: ')
condition = {'age': {'$gt': 20}}
result = collection.update_many(condition, {'$inc': {'age': 1}})
print(result)
print(result.matched_count, result.modified_count)

运行结果:

update_one: 
<pymongo.results.UpdateResult object at 0x7f6cace0f9c8>
1 1
==================== 分割线 ====================
update_many: 
<pymongo.results.UpdateResult object at 0x7f6cace0fa88>
3 3
12345678910
{‘age': {'$gt': 20}}为查找年龄大于20的, {‘inc': {‘age': 1}}为将年龄+1

5. 删除:

import pymongo
from bson.objectid import ObjectId
client = pymongo.MongoClient('mongodb://localhost:27017/')
db = client.test4
collection = db.students
#删除
result = collection.remove({'name': 'Jack'})
print(result)
#推荐使用
result = collection.delete_one({'age': {'$gt': 20}})
print(result.deleted_count)
result = collection.delete_many({'age': {'$gt': 20}})
print(result.deleted_count)

运行结果:

{'ok': 1, 'n': 1}
1
2

6. 其他

除了上述常用的之外, 还包括find_one_and_delete()查找后删除、find_one_and_replace()查找后替换, 有兴趣可以百度深入了解.

总结

以上所述是小编给大家介绍的Python与Mongodb数据库之间的操作方法,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对三水点靠木网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

Python 相关文章推荐
Python中用Ctrl+C终止多线程程序的问题解决
Mar 30 Python
Python压缩和解压缩zip文件
Feb 14 Python
Python字符串替换实例分析
May 11 Python
Python实现爬取需要登录的网站完整示例
Aug 19 Python
在Python程序员面试中被问的最多的10道题
Dec 05 Python
python将文本分每两行一组并保存到文件
Mar 19 Python
Python查找第n个子串的技巧分享
Jun 27 Python
python判断字符串或者集合是否为空的实例
Jan 23 Python
tensorflow对图像进行拼接的例子
Feb 05 Python
PyQt5实现仿QQ贴边隐藏功能的实例代码
May 24 Python
python中np是做什么的
Jul 21 Python
python如何利用cv2.rectangle()绘制矩形框
Dec 24 Python
Python字典对象实现原理详解
Jul 01 #Python
Python Pandas 获取列匹配特定值的行的索引问题
Jul 01 #Python
Python动态语言与鸭子类型详解
Jul 01 #Python
详解python websocket获取实时数据的几种常见链接方式
Jul 01 #Python
使用python将mysql数据库的数据转换为json数据的方法
Jul 01 #Python
python字符串Intern机制详解
Jul 01 #Python
简单了解python单例模式的几种写法
Jul 01 #Python
You might like
使用PHP实现下载CSS文件中的图片
2015/12/06 PHP
Jquery在IE7下无法使用 $.ajax解决方法
2009/11/11 Javascript
获取客户端电脑日期时间js代码(jquery)
2012/09/12 Javascript
关于js数组去重的问题小结
2014/01/24 Javascript
TypeError document.getElementById(...) is null错误原因
2015/05/18 Javascript
JS+DIV+CSS排版布局实现美观的选项卡效果
2015/10/10 Javascript
JS使用cookie实现DIV提示框只显示一次的方法
2015/11/05 Javascript
javascript随机抽取0-100之间不重复的10个数
2016/02/25 Javascript
深入理解jquery中extend的实现
2016/12/22 Javascript
vue增删改查的简单操作
2017/07/15 Javascript
JS实现数组深拷贝的方法分析
2019/03/06 Javascript
js 计算图片内点个数的示例代码
2019/04/04 Javascript
详解Vue中使用Axios拦截器
2019/04/22 Javascript
js刷新页面location.reload()用法详解
2019/12/09 Javascript
vue a标签点击实现赋值方式
2020/09/07 Javascript
[04:50]2019DOTA2高校联赛秋季赛四强集锦
2019/12/27 DOTA
python输出指定月份日历的方法
2015/04/23 Python
Python实现监控程序执行时间并将其写入日志的方法
2015/06/30 Python
python3实现ftp服务功能(服务端 For Linux)
2017/03/24 Python
Python实现一个数组除以一个数的例子
2019/07/20 Python
Python 中pandas索引切片读取数据缺失数据处理问题
2019/10/09 Python
使用pandas实现连续数据的离散化处理方式(分箱操作)
2019/11/22 Python
10个python爬虫入门基础代码实例 + 1个简单的python爬虫完整实例
2020/12/16 Python
使用CSS3实现多列布局与多背景的技巧
2016/02/29 HTML / CSS
Mytheresa美国官网:德国知名的女性奢侈品电商
2017/05/27 全球购物
德国2018年度最佳在线药房:Bodfeld Apotheke
2019/11/04 全球购物
Sisley法国希思黎美国官方网站:享誉全球的奢华植物美容品牌
2020/06/27 全球购物
大学在校生求职信范文
2013/11/21 职场文书
公司周年庆典邀请函
2014/01/12 职场文书
运动会搞笑广播稿
2014/10/14 职场文书
2014年学生资助工作总结
2014/12/18 职场文书
药品销售内勤岗位职责
2015/04/13 职场文书
2015年房地产销售工作总结
2015/04/20 职场文书
离婚撤诉申请书范本
2015/05/18 职场文书
2015年宣传思想工作总结
2015/05/22 职场文书
Python中requests做接口测试的方法
2021/05/30 Python