TensorFlow2.0使用keras训练模型的实现


Posted in Python onFebruary 20, 2021

1.一般的模型构造、训练、测试流程

# 模型构造
inputs = keras.Input(shape=(784,), name='mnist_input')
h1 = layers.Dense(64, activation='relu')(inputs)
h1 = layers.Dense(64, activation='relu')(h1)
outputs = layers.Dense(10, activation='softmax')(h1)
model = keras.Model(inputs, outputs)
# keras.utils.plot_model(model, 'net001.png', show_shapes=True)

model.compile(optimizer=keras.optimizers.RMSprop(),
    loss=keras.losses.SparseCategoricalCrossentropy(),
    metrics=[keras.metrics.SparseCategoricalAccuracy()])

# 载入数据
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.reshape(60000, 784).astype('float32') /255
x_test = x_test.reshape(10000, 784).astype('float32') /255

x_val = x_train[-10000:]
y_val = y_train[-10000:]

x_train = x_train[:-10000]
y_train = y_train[:-10000]

# 训练模型
history = model.fit(x_train, y_train, batch_size=64, epochs=3,
   validation_data=(x_val, y_val))
print('history:')
print(history.history)

result = model.evaluate(x_test, y_test, batch_size=128)
print('evaluate:')
print(result)
pred = model.predict(x_test[:2])
print('predict:')
print(pred)

2.自定义损失和指标

自定义指标只需继承Metric类, 并重写一下函数

_init_(self),初始化。

update_state(self,y_true,y_pred,sample_weight = None),它使用目标y_true和模型预测y_pred来更新状态变量。

result(self),它使用状态变量来计算最终结果。

reset_states(self),重新初始化度量的状态。

# 这是一个简单的示例,显示如何实现CatgoricalTruePositives指标,该指标计算正确分类为属于给定类的样本数量

class CatgoricalTruePostives(keras.metrics.Metric):
 def __init__(self, name='binary_true_postives', **kwargs):
  super(CatgoricalTruePostives, self).__init__(name=name, **kwargs)
  self.true_postives = self.add_weight(name='tp', initializer='zeros')
  
 def update_state(self, y_true, y_pred, sample_weight=None):
  y_pred = tf.argmax(y_pred)
  y_true = tf.equal(tf.cast(y_pred, tf.int32), tf.cast(y_true, tf.int32))
  
  y_true = tf.cast(y_true, tf.float32)
  
  if sample_weight is not None:
   sample_weight = tf.cast(sample_weight, tf.float32)
   y_true = tf.multiply(sample_weight, y_true)
   
  return self.true_postives.assign_add(tf.reduce_sum(y_true))
 
 def result(self):
  return tf.identity(self.true_postives)
 
 def reset_states(self):
  self.true_postives.assign(0.)
  

model.compile(optimizer=keras.optimizers.RMSprop(1e-3),
    loss=keras.losses.SparseCategoricalCrossentropy(),
    metrics=[CatgoricalTruePostives()])

model.fit(x_train, y_train,
   batch_size=64, epochs=3)
# 以定义网络层的方式添加网络loss
class ActivityRegularizationLayer(layers.Layer):
 def call(self, inputs):
  self.add_loss(tf.reduce_sum(inputs) * 0.1)
  return inputs

inputs = keras.Input(shape=(784,), name='mnist_input')
h1 = layers.Dense(64, activation='relu')(inputs)
h1 = ActivityRegularizationLayer()(h1)
h1 = layers.Dense(64, activation='relu')(h1)
outputs = layers.Dense(10, activation='softmax')(h1)
model = keras.Model(inputs, outputs)
# keras.utils.plot_model(model, 'net001.png', show_shapes=True)

model.compile(optimizer=keras.optimizers.RMSprop(),
    loss=keras.losses.SparseCategoricalCrossentropy(),
    metrics=[keras.metrics.SparseCategoricalAccuracy()])
model.fit(x_train, y_train, batch_size=32, epochs=1)
# 也可以以定义网络层的方式添加要统计的metric
class MetricLoggingLayer(layers.Layer):
 def call(self, inputs):
  self.add_metric(keras.backend.std(inputs),
      name='std_of_activation',
      aggregation='mean')
  
  return inputs

inputs = keras.Input(shape=(784,), name='mnist_input')
h1 = layers.Dense(64, activation='relu')(inputs)
h1 = MetricLoggingLayer()(h1)
h1 = layers.Dense(64, activation='relu')(h1)
outputs = layers.Dense(10, activation='softmax')(h1)
model = keras.Model(inputs, outputs)
# keras.utils.plot_model(model, 'net001.png', show_shapes=True)

model.compile(optimizer=keras.optimizers.RMSprop(),
    loss=keras.losses.SparseCategoricalCrossentropy(),
    metrics=[keras.metrics.SparseCategoricalAccuracy()])
model.fit(x_train, y_train, batch_size=32, epochs=1)
# 也可以直接在model上面加
# 也可以以定义网络层的方式添加要统计的metric
class MetricLoggingLayer(layers.Layer):
 def call(self, inputs):
  self.add_metric(keras.backend.std(inputs),
      name='std_of_activation',
      aggregation='mean')
  
  return inputs

inputs = keras.Input(shape=(784,), name='mnist_input')
h1 = layers.Dense(64, activation='relu')(inputs)
h2 = layers.Dense(64, activation='relu')(h1)
outputs = layers.Dense(10, activation='softmax')(h2)
model = keras.Model(inputs, outputs)

model.add_metric(keras.backend.std(inputs),
      name='std_of_activation',
      aggregation='mean')
model.add_loss(tf.reduce_sum(h1)*0.1)

# keras.utils.plot_model(model, 'net001.png', show_shapes=True)

model.compile(optimizer=keras.optimizers.RMSprop(),
    loss=keras.losses.SparseCategoricalCrossentropy(),
    metrics=[keras.metrics.SparseCategoricalAccuracy()])
model.fit(x_train, y_train, batch_size=32, epochs=1)

处理使用validation_data传入测试数据,还可以使用validation_split划分验证数据

ps:validation_split只能在用numpy数据训练的情况下使用

model.fit(x_train, y_train, batch_size=32, epochs=1, validation_split=0.2)

3.使用tf.data构造数据

def get_compiled_model():
 inputs = keras.Input(shape=(784,), name='mnist_input')
 h1 = layers.Dense(64, activation='relu')(inputs)
 h2 = layers.Dense(64, activation='relu')(h1)
 outputs = layers.Dense(10, activation='softmax')(h2)
 model = keras.Model(inputs, outputs)
 model.compile(optimizer=keras.optimizers.RMSprop(),
     loss=keras.losses.SparseCategoricalCrossentropy(),
     metrics=[keras.metrics.SparseCategoricalAccuracy()])
 return model
model = get_compiled_model()
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
train_dataset = train_dataset.shuffle(buffer_size=1024).batch(64)

val_dataset = tf.data.Dataset.from_tensor_slices((x_val, y_val))
val_dataset = val_dataset.batch(64)

# model.fit(train_dataset, epochs=3)
# steps_per_epoch 每个epoch只训练几步
# validation_steps 每次验证,验证几步
model.fit(train_dataset, epochs=3, steps_per_epoch=100,
   validation_data=val_dataset, validation_steps=3)

4.样本权重和类权重

“样本权重”数组是一个数字数组,用于指定批处理中每个样本在计算总损失时应具有多少权重。 它通常用于不平衡的分类问题(这个想法是为了给予很少见的类更多的权重)。 当使用的权重是1和0时,该数组可以用作损失函数的掩码(完全丢弃某些样本对总损失的贡献)。

“类权重”dict是同一概念的更具体的实例:它将类索引映射到应该用于属于该类的样本的样本权重。 例如,如果类“0”比数据中的类“1”少两倍,则可以使用class_weight = {0:1.,1:0.5}。

# 增加第5类的权重
import numpy as np
# 样本权重
model = get_compiled_model()
class_weight = {i:1.0 for i in range(10)}
class_weight[5] = 2.0
print(class_weight)
model.fit(x_train, y_train,
   class_weight=class_weight,
   batch_size=64,
   epochs=4)
# 类权重
model = get_compiled_model()
sample_weight = np.ones(shape=(len(y_train),))
sample_weight[y_train == 5] = 2.0
model.fit(x_train, y_train,
   sample_weight=sample_weight,
   batch_size=64,
   epochs=4)
# tf.data数据
model = get_compiled_model()

sample_weight = np.ones(shape=(len(y_train),))
sample_weight[y_train == 5] = 2.0

train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train,
             sample_weight))
train_dataset = train_dataset.shuffle(buffer_size=1024).batch(64)

val_dataset = tf.data.Dataset.from_tensor_slices((x_val, y_val))
val_dataset = val_dataset.batch(64)

model.fit(train_dataset, epochs=3, )

5.多输入多输出模型

image_input = keras.Input(shape=(32, 32, 3), name='img_input')
timeseries_input = keras.Input(shape=(None, 10), name='ts_input')

x1 = layers.Conv2D(3, 3)(image_input)
x1 = layers.GlobalMaxPooling2D()(x1)

x2 = layers.Conv1D(3, 3)(timeseries_input)
x2 = layers.GlobalMaxPooling1D()(x2)

x = layers.concatenate([x1, x2])

score_output = layers.Dense(1, name='score_output')(x)
class_output = layers.Dense(5, activation='softmax', name='class_output')(x)

model = keras.Model(inputs=[image_input, timeseries_input],
     outputs=[score_output, class_output])
keras.utils.plot_model(model, 'multi_input_output_model.png'
      , show_shapes=True)
# 可以为模型指定不同的loss和metrics
model.compile(
 optimizer=keras.optimizers.RMSprop(1e-3),
 loss=[keras.losses.MeanSquaredError(),
   keras.losses.CategoricalCrossentropy()])

# 还可以指定loss的权重
model.compile(
 optimizer=keras.optimizers.RMSprop(1e-3),
 loss={'score_output': keras.losses.MeanSquaredError(),
   'class_output': keras.losses.CategoricalCrossentropy()},
 metrics={'score_output': [keras.metrics.MeanAbsolutePercentageError(),
        keras.metrics.MeanAbsoluteError()],
    'class_output': [keras.metrics.CategoricalAccuracy()]},
 loss_weight={'score_output': 2., 'class_output': 1.})

# 可以把不需要传播的loss置0
model.compile(
 optimizer=keras.optimizers.RMSprop(1e-3),
 loss=[None, keras.losses.CategoricalCrossentropy()])

# Or dict loss version
model.compile(
 optimizer=keras.optimizers.RMSprop(1e-3),
 loss={'class_output': keras.losses.CategoricalCrossentropy()})

6.使用回 调

Keras中的回调是在训练期间(在epoch开始时,batch结束时,epoch结束时等)在不同点调用的对象,可用于实现以下行为:

  • 在培训期间的不同时间点进行验证(超出内置的每个时期验证)
  • 定期检查模型或超过某个精度阈值
  • 在训练似乎平稳时改变模型的学习率
  • 在训练似乎平稳时对顶层进行微调
  • 在培训结束或超出某个性能阈值时发送电子邮件或即时消息通知等等。

可使用的内置回调有

  • ModelCheckpoint:定期保存模型。
  • EarlyStopping:当训练不再改进验证指标时停止培训。
  • TensorBoard:定期编写可在TensorBoard中显示的模型日志(更多细节见“可视化”)。
  • CSVLogger:将丢失和指标数据流式传输到CSV文件。
  • 等等

6.1回调使用

model = get_compiled_model()

callbacks = [
 keras.callbacks.EarlyStopping(
  # Stop training when `val_loss` is no longer improving
  monitor='val_loss',
  # "no longer improving" being defined as "no better than 1e-2 less"
  min_delta=1e-2,
  # "no longer improving" being further defined as "for at least 2 epochs"
  patience=2,
  verbose=1)
]
model.fit(x_train, y_train,
   epochs=20,
   batch_size=64,
   callbacks=callbacks,
   validation_split=0.2)
# checkpoint模型回调
model = get_compiled_model()
check_callback = keras.callbacks.ModelCheckpoint(
 filepath='mymodel_{epoch}.h5',
 save_best_only=True,
 monitor='val_loss',
 verbose=1
)

model.fit(x_train, y_train,
   epochs=3,
   batch_size=64,
   callbacks=[check_callback],
   validation_split=0.2)
# 动态调整学习率
initial_learning_rate = 0.1
lr_schedule = keras.optimizers.schedules.ExponentialDecay(
 initial_learning_rate,
 decay_steps=10000,
 decay_rate=0.96,
 staircase=True
)
optimizer = keras.optimizers.RMSprop(learning_rate=lr_schedule)
# 使用tensorboard
tensorboard_cbk = keras.callbacks.TensorBoard(log_dir='./full_path_to_your_logs')
model.fit(x_train, y_train,
   epochs=5,
   batch_size=64,
   callbacks=[tensorboard_cbk],
   validation_split=0.2)

6.2创建自己的回调方法

class LossHistory(keras.callbacks.Callback):
 def on_train_begin(self, logs):
  self.losses = []
 def on_epoch_end(self, batch, logs):
  self.losses.append(logs.get('loss'))
  print('\nloss:',self.losses[-1])
  
model = get_compiled_model()

callbacks = [
 LossHistory()
]
model.fit(x_train, y_train,
   epochs=3,
   batch_size=64,
   callbacks=callbacks,
   validation_split=0.2)

7.自己构造训练和验证循环

# Get the model.
inputs = keras.Input(shape=(784,), name='digits')
x = layers.Dense(64, activation='relu', name='dense_1')(inputs)
x = layers.Dense(64, activation='relu', name='dense_2')(x)
outputs = layers.Dense(10, activation='softmax', name='predictions')(x)
model = keras.Model(inputs=inputs, outputs=outputs)

# Instantiate an optimizer.
optimizer = keras.optimizers.SGD(learning_rate=1e-3)
# Instantiate a loss function.
loss_fn = keras.losses.SparseCategoricalCrossentropy()

# Prepare the training dataset.
batch_size = 64
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
train_dataset = train_dataset.shuffle(buffer_size=1024).batch(batch_size)

# 自己构造循环
for epoch in range(3):
 print('epoch: ', epoch)
 for step, (x_batch_train, y_batch_train) in enumerate(train_dataset):
  # 开一个gradient tape, 计算梯度
  with tf.GradientTape() as tape:
   logits = model(x_batch_train)
   
   loss_value = loss_fn(y_batch_train, logits)
   grads = tape.gradient(loss_value, model.trainable_variables)
   optimizer.apply_gradients(zip(grads, model.trainable_variables))
   
  if step % 200 == 0:
   print('Training loss (for one batch) at step %s: %s' % (step, float(loss_value)))
   print('Seen so far: %s samples' % ((step + 1) * 64))
# 训练并验证
# Get model
inputs = keras.Input(shape=(784,), name='digits')
x = layers.Dense(64, activation='relu', name='dense_1')(inputs)
x = layers.Dense(64, activation='relu', name='dense_2')(x)
outputs = layers.Dense(10, activation='softmax', name='predictions')(x)
model = keras.Model(inputs=inputs, outputs=outputs)

# Instantiate an optimizer to train the model.
optimizer = keras.optimizers.SGD(learning_rate=1e-3)
# Instantiate a loss function.
loss_fn = keras.losses.SparseCategoricalCrossentropy()

# Prepare the metrics.
train_acc_metric = keras.metrics.SparseCategoricalAccuracy() 
val_acc_metric = keras.metrics.SparseCategoricalAccuracy()

# Prepare the training dataset.
batch_size = 64
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
train_dataset = train_dataset.shuffle(buffer_size=1024).batch(batch_size)

# Prepare the validation dataset.
val_dataset = tf.data.Dataset.from_tensor_slices((x_val, y_val))
val_dataset = val_dataset.batch(64)


# Iterate over epochs.
for epoch in range(3):
 print('Start of epoch %d' % (epoch,))
 
 # Iterate over the batches of the dataset.
 for step, (x_batch_train, y_batch_train) in enumerate(train_dataset):
 with tf.GradientTape() as tape:
  logits = model(x_batch_train)
  loss_value = loss_fn(y_batch_train, logits)
 grads = tape.gradient(loss_value, model.trainable_variables)
 optimizer.apply_gradients(zip(grads, model.trainable_variables))
  
 # Update training metric.
 train_acc_metric(y_batch_train, logits)

 # Log every 200 batches.
 if step % 200 == 0:
  print('Training loss (for one batch) at step %s: %s' % (step, float(loss_value)))
  print('Seen so far: %s samples' % ((step + 1) * 64))

 # Display metrics at the end of each epoch.
 train_acc = train_acc_metric.result()
 print('Training acc over epoch: %s' % (float(train_acc),))
 # Reset training metrics at the end of each epoch
 train_acc_metric.reset_states()

 # Run a validation loop at the end of each epoch.
 for x_batch_val, y_batch_val in val_dataset:
 val_logits = model(x_batch_val)
 # Update val metrics
 val_acc_metric(y_batch_val, val_logits)
 val_acc = val_acc_metric.result()
 val_acc_metric.reset_states()
 print('Validation acc: %s' % (float(val_acc),))
## 添加自己构造的loss, 每次只能看到最新一次训练增加的loss
class ActivityRegularizationLayer(layers.Layer):
 
 def call(self, inputs):
 self.add_loss(1e-2 * tf.reduce_sum(inputs))
 return inputs
 
inputs = keras.Input(shape=(784,), name='digits')
x = layers.Dense(64, activation='relu', name='dense_1')(inputs)
# Insert activity regularization as a layer
x = ActivityRegularizationLayer()(x)
x = layers.Dense(64, activation='relu', name='dense_2')(x)
outputs = layers.Dense(10, activation='softmax', name='predictions')(x)

model = keras.Model(inputs=inputs, outputs=outputs)
logits = model(x_train[:64])
print(model.losses)
logits = model(x_train[:64])
logits = model(x_train[64: 128])
logits = model(x_train[128: 192])
print(model.losses)
# 将loss添加进求导中
optimizer = keras.optimizers.SGD(learning_rate=1e-3)

for epoch in range(3):
 print('Start of epoch %d' % (epoch,))

 for step, (x_batch_train, y_batch_train) in enumerate(train_dataset):
 with tf.GradientTape() as tape:
  logits = model(x_batch_train)
  loss_value = loss_fn(y_batch_train, logits)

  # Add extra losses created during this forward pass:
  loss_value += sum(model.losses)
  
 grads = tape.gradient(loss_value, model.trainable_variables)
 optimizer.apply_gradients(zip(grads, model.trainable_variables))

 # Log every 200 batches.
 if step % 200 == 0:
  print('Training loss (for one batch) at step %s: %s' % (step, float(loss_value)))
  print('Seen so far: %s samples' % ((step + 1) * 64))

到此这篇关于TensorFlow2.0使用keras训练模型的实现的文章就介绍到这了,更多相关TensorFlow2.0 keras训练模型内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Django数据库操作的实例(增删改查)
Sep 04 Python
python实现批量修改文件名代码
Sep 10 Python
LRUCache的实现原理及利用python实现的方法
Nov 21 Python
django DRF图片路径问题的解决方法
Sep 10 Python
几个适合python初学者的简单小程序,看完受益匪浅!(推荐)
Apr 16 Python
浅谈django2.0 ForeignKey参数的变化
Aug 06 Python
python自动循环定时开关机(非重启)测试
Aug 26 Python
浅谈tensorflow使用张量时的一些注意点tf.concat,tf.reshape,tf.stack
Jun 23 Python
Python3爬虫中Selenium的用法详解
Jul 10 Python
Python基于pillow库实现生成图片水印
Sep 14 Python
Ubuntu权限不足无法创建文件夹解决方案
Nov 14 Python
python爬虫中抓取指数的实例讲解
Dec 01 Python
tensorflow2.0教程之Keras快速入门
Feb 20 #Python
在Pycharm中安装Pandas库方法(简单易懂)
Feb 20 #Python
Python3爬虫RedisDump的安装步骤
Feb 20 #Python
python爬取2021猫眼票房字体加密实例
Feb 19 #Python
Python之Sklearn使用入门教程
Feb 19 #Python
Python爬虫UA伪装爬取的实例讲解
Feb 19 #Python
Pycharm制作搞怪弹窗的实现代码
Feb 19 #Python
You might like
玩转图像函数库―常见图形操作
2006/09/03 PHP
php生成WAP页面
2006/10/09 PHP
如何在smarty中增加类似foreach的功能自动加载数据
2013/06/26 PHP
php中define用法实例
2015/07/30 PHP
PHP重定向与伪静态区别
2017/02/19 PHP
PHPstorm激活码2020年5月13日亲测有效
2020/09/17 PHP
用javascript实现点击链接弹出"图片另存为"而不是直接打开
2007/08/15 Javascript
javascript闭包的高级使用方法实例
2013/07/04 Javascript
JS onmousemove鼠标移动坐标接龙DIV效果实例
2013/12/16 Javascript
Javascript中的方法链(Method Chaining)介绍
2015/03/15 Javascript
javascript实现客户端兼容各浏览器创建csv并下载的方法
2015/03/23 Javascript
微信小程序 教程之事件
2016/10/18 Javascript
详谈Angular路由与Nodejs路由的区别
2017/03/05 NodeJs
vue调用高德地图实例代码
2017/04/28 Javascript
Angular2学习教程之ng中变更检测问题详解
2017/05/28 Javascript
详解js静态资源文件请求的处理
2017/08/01 Javascript
JS获取字符对应的ASCII码实例
2017/09/10 Javascript
vue组件name的作用小结
2018/05/23 Javascript
JS自定义滚动条效果
2020/03/13 Javascript
wxpython 学习笔记 第一天
2009/02/09 Python
使用graphics.py实现2048小游戏
2015/03/10 Python
Python遍历pandas数据方法总结
2018/02/09 Python
python基础教程项目三之万能的XML
2018/04/02 Python
python3+dlib实现人脸识别和情绪分析
2018/04/21 Python
Python装饰器限制函数运行时间超时则退出执行
2019/04/09 Python
django中的图片验证码功能
2019/09/18 Python
美国汽车零部件和配件网站:CarParts
2019/03/13 全球购物
英国在线药房和在线医生:LloydsPharmacy
2019/10/21 全球购物
请描述一下”is a”关系和”has a”关系
2015/02/03 面试题
描述内存分配方式以及它们的区别
2016/10/15 面试题
销售行业个人求职自荐信
2013/09/25 职场文书
大学生个人简历自我评价
2013/11/16 职场文书
美丽的大脚观后感
2015/06/03 职场文书
大学运动会通讯稿
2015/07/18 职场文书
2016党员干部廉洁自律心得体会
2016/01/13 职场文书
MySQL子查询中order by不生效问题的解决方法
2021/08/02 MySQL