tensorflow2.0教程之Keras快速入门


Posted in Python onFebruary 20, 2021

Keras 是一个用于构建和训练深度学习模型的高阶 API。它可用于快速设计原型、高级研究和生产。 keras的3个优点:
方便用户使用、模块化和可组合、易于扩展

1.导入tf.keras

tensorflow2推荐使用keras构建网络,常见的神经网络都包含在keras.layer中(最新的tf.keras的版本可能和keras不同)

import tensorflow as tf
from tensorflow.keras import layers
print(tf.__version__)
print(tf.keras.__version__)

2.构建简单模型

2.1模型堆叠

最常见的模型类型是层的堆叠:tf.keras.Sequential 模型

model = tf.keras.Sequential()
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))

2.2网络配置

tf.keras.layers中网络配置:

activation:设置层的激活函数。此参数由内置函数的名称指定,或指定为可调用对象。默认情况下,系统不会应用任何激活函数。

kernel_initializer 和 bias_initializer:创建层权重(核和偏差)的初始化方案。此参数是一个名称或可调用对象,默认为 “Glorot uniform” 初始化器。

kernel_regularizer 和 bias_regularizer:应用层权重(核和偏差)的正则化方案,例如 L1 或 L2 正则化。默认情况下,系统不会应用正则化函数。

layers.Dense(32, activation='sigmoid')
layers.Dense(32, activation=tf.sigmoid)
layers.Dense(32, kernel_initializer='orthogonal')
layers.Dense(32, kernel_initializer=tf.keras.initializers.glorot_normal)
layers.Dense(32, kernel_regularizer=tf.keras.regularizers.l2(0.01))
layers.Dense(32, kernel_regularizer=tf.keras.regularizers.l1(0.01))

3.训练和评估

3.1设置训练流程

构建好模型后,通过调用 compile 方法配置该模型的学习流程:

model = tf.keras.Sequential()
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
       loss=tf.keras.losses.categorical_crossentropy,
       metrics=[tf.keras.metrics.categorical_accuracy])

3.2输入Numpy数据

import numpy as np

train_x = np.random.random((1000, 72))
train_y = np.random.random((1000, 10))

val_x = np.random.random((200, 72))
val_y = np.random.random((200, 10))

model.fit(train_x, train_y, epochs=10, batch_size=100,
     validation_data=(val_x, val_y))

3.3tf.data输入数据

dataset = tf.data.Dataset.from_tensor_slices((train_x, train_y))
dataset = dataset.batch(32)
dataset = dataset.repeat()
val_dataset = tf.data.Dataset.from_tensor_slices((val_x, val_y))
val_dataset = val_dataset.batch(32)
val_dataset = val_dataset.repeat()

model.fit(dataset, epochs=10, steps_per_epoch=30,
     validation_data=val_dataset, validation_steps=3)

3.4评估与预测

test_x = np.random.random((1000, 72))
test_y = np.random.random((1000, 10))
model.evaluate(test_x, test_y, batch_size=32)
test_data = tf.data.Dataset.from_tensor_slices((test_x, test_y))
test_data = test_data.batch(32).repeat()
model.evaluate(test_data, steps=30)
# predict
result = model.predict(test_x, batch_size=32)
print(result)

4.构建高级模型

4.1函数式api

tf.keras.Sequential 模型是层的简单堆叠,无法表示任意模型。使用 Keras 函数式 API 可以构建复杂的模型拓扑,例如:

多输入模型,

多输出模型,

具有共享层的模型(同一层被调用多次),

具有非序列数据流的模型(例如,残差连接)。

使用函数式 API 构建的模型具有以下特征:

层实例可调用并返回张量。

输入张量和输出张量用于定义 tf.keras.Model 实例。

此模型的训练方式和 Sequential 模型一样。

input_x = tf.keras.Input(shape=(72,))
hidden1 = layers.Dense(32, activation='relu')(input_x)
hidden2 = layers.Dense(16, activation='relu')(hidden1)
pred = layers.Dense(10, activation='softmax')(hidden2)

model = tf.keras.Model(inputs=input_x, outputs=pred)
model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
       loss=tf.keras.losses.categorical_crossentropy,
       metrics=['accuracy'])
model.fit(train_x, train_y, batch_size=32, epochs=5)

4.2模型子类化

通过对 tf.keras.Model 进行子类化并定义您自己的前向传播来构建完全可自定义的模型。在 init 方法中创建层并将它们设置为类实例的属性。在 call 方法中定义前向传播

class MyModel(tf.keras.Model):
  def __init__(self, num_classes=10):
    super(MyModel, self).__init__(name='my_model')
    self.num_classes = num_classes
    self.layer1 = layers.Dense(32, activation='relu')
    self.layer2 = layers.Dense(num_classes, activation='softmax')
  def call(self, inputs):
    h1 = self.layer1(inputs)
    out = self.layer2(h1)
    return out
  
  def compute_output_shape(self, input_shape):
    shape = tf.TensorShapej(input_shape).as_list()
    shape[-1] = self.num_classes
    return tf.TensorShape(shape)

model = MyModel(num_classes=10)
model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001),
       loss=tf.keras.losses.categorical_crossentropy,
       metrics=['accuracy'])

model.fit(train_x, train_y, batch_size=16, epochs=5)

4.3自定义层

通过对 tf.keras.layers.Layer 进行子类化并实现以下方法来创建自定义层:

build:创建层的权重。使用 add_weight 方法添加权重。

call:定义前向传播。

compute_output_shape:指定在给定输入形状的情况下如何计算层的输出形状。
或者,可以通过实现 get_config 方法和 from_config 类方法序列化层。

class MyLayer(layers.Layer):
  def __init__(self, output_dim, **kwargs):
    self.output_dim = output_dim
    super(MyLayer, self).__init__(**kwargs)
  
  def build(self, input_shape):
    shape = tf.TensorShape((input_shape[1], self.output_dim))
    self.kernel = self.add_weight(name='kernel1', shape=shape,
                  initializer='uniform', trainable=True)
    super(MyLayer, self).build(input_shape)
  
  def call(self, inputs):
    return tf.matmul(inputs, self.kernel)

  def compute_output_shape(self, input_shape):
    shape = tf.TensorShape(input_shape).as_list()
    shape[-1] = self.output_dim
    return tf.TensorShape(shape)

  def get_config(self):
    base_config = super(MyLayer, self).get_config()
    base_config['output_dim'] = self.output_dim
    return base_config

  @classmethod
  def from_config(cls, config):
    return cls(**config)
  
model = tf.keras.Sequential(
[
  MyLayer(10),
  layers.Activation('softmax')
])


model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001),
       loss=tf.keras.losses.categorical_crossentropy,
       metrics=['accuracy'])

model.fit(train_x, train_y, batch_size=16, epochs=5)

4.3回调

callbacks = [
  tf.keras.callbacks.EarlyStopping(patience=2, monitor='val_loss'),
  tf.keras.callbacks.TensorBoard(log_dir='./logs')
]
model.fit(train_x, train_y, batch_size=16, epochs=5,
     callbacks=callbacks, validation_data=(val_x, val_y))

5保持和恢复

5.1权重保存

model = tf.keras.Sequential([
layers.Dense(64, activation='relu'),
layers.Dense(10, activation='softmax')])

model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
       loss='categorical_crossentropy',
       metrics=['accuracy'])

model.save_weights('./weights/model')
model.load_weights('./weights/model')
model.save_weights('./model.h5')
model.load_weights('./model.h5')

5.2保存网络结构

# 序列化成json
import json
import pprint
json_str = model.to_json()
pprint.pprint(json.loads(json_str))
fresh_model = tf.keras.models.model_from_json(json_str)


# 保持为yaml格式 #需要提前安装pyyaml

yaml_str = model.to_yaml()
print(yaml_str)
fresh_model = tf.keras.models.model_from_yaml(yaml_str)

5.3保存整个模型

model = tf.keras.Sequential([
 layers.Dense(10, activation='softmax', input_shape=(72,)),
 layers.Dense(10, activation='softmax')
])
model.compile(optimizer='rmsprop',
       loss='categorical_crossentropy',
       metrics=['accuracy'])
model.fit(train_x, train_y, batch_size=32, epochs=5)
model.save('all_model.h5')
model = tf.keras.models.load_model('all_model.h5')

6.将keras用于Estimator

Estimator API 用于针对分布式环境训练模型。它适用于一些行业使用场景,例如用大型数据集进行分布式训练并导出模型以用于生产

model = tf.keras.Sequential([layers.Dense(10,activation='softmax'),
             layers.Dense(10,activation='softmax')])

model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001),
       loss='categorical_crossentropy',
       metrics=['accuracy'])

estimator = tf.keras.estimator.model_to_estimator(model)

到此这篇关于tensorflow2.0教程之Keras快速入门的文章就介绍到这了,更多相关Keras快速入门内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python中的localtime()方法使用详解
May 22 Python
Python同时向控制台和文件输出日志logging的方法
May 26 Python
Python修改MP3文件的方法
Jun 15 Python
Python基于numpy灵活定义神经网络结构的方法
Aug 19 Python
Python cookbook(数据结构与算法)保存最后N个元素的方法
Feb 13 Python
python爬虫之模拟登陆csdn的实例代码
May 18 Python
解决Pandas的DataFrame输出截断和省略的问题
Feb 08 Python
Python实现基于SVM的分类器的方法
Jul 19 Python
Python实现Restful API的例子
Aug 31 Python
jupyter notebook参数化运行python方式
Apr 10 Python
Python3 ffmpeg视频转换工具使用方法解析
Aug 10 Python
编写python程序的90条建议
Apr 14 Python
在Pycharm中安装Pandas库方法(简单易懂)
Feb 20 #Python
Python3爬虫RedisDump的安装步骤
Feb 20 #Python
python爬取2021猫眼票房字体加密实例
Feb 19 #Python
Python之Sklearn使用入门教程
Feb 19 #Python
Python爬虫UA伪装爬取的实例讲解
Feb 19 #Python
Pycharm制作搞怪弹窗的实现代码
Feb 19 #Python
python 高阶函数简单介绍
Feb 19 #Python
You might like
PHP获取表单textarea数据中的换行问题
2010/09/10 PHP
PHP实现QQ登录实例代码
2016/01/14 PHP
php正则表达式验证(邮件地址、Url地址、电话号码、邮政编码)
2016/03/14 PHP
php cookie用户登录的详解及实例代码
2017/01/03 PHP
Laravel 中使用 Vue.js 实现基于 Ajax 的表单提交错误验证操作
2017/06/30 PHP
PHP实践教程之过滤、验证、转义与密码详解
2017/07/24 PHP
JavaScript 动态生成方法的例子
2009/07/22 Javascript
让table变成exls的示例代码
2014/03/24 Javascript
javascript原生和jquery库实现iframe自适应高度和宽度
2014/07/18 Javascript
Javascript基础教程之数据类型 (布尔型 Boolean)
2015/01/18 Javascript
javascript中window.open在原来的窗口中打开新的窗口(不同名)
2015/11/15 Javascript
通过Tabs方法基于easyUI+bootstrap制作工作站
2016/03/28 Javascript
Jquery循环截取字符串的方法(多出的字符串处理成"...")
2016/11/28 Javascript
微信公众号 摇一摇周边功能开发
2016/12/08 Javascript
微信小程序通过保存图片分享到朋友圈功能
2018/05/24 Javascript
浅析Vue.js 中的条件渲染指令
2018/11/19 Javascript
Vue点击切换Class变化,实现Active当前样式操作
2020/07/17 Javascript
解决vue的touchStart事件及click事件冲突问题
2020/07/21 Javascript
Vue实现todo应用的示例
2021/02/20 Vue.js
[19:24]DOTA2客户端使用指南 一分钟快速设置轻松超神
2013/09/24 DOTA
[36:02]DOTA2上海特级锦标赛D组小组赛#2 Liquid VS VP第一局
2016/02/28 DOTA
python实现zencart产品数据导入到magento(python导入数据)
2014/04/03 Python
Python黑帽编程 3.4 跨越VLAN详解
2016/09/28 Python
浅析Python3中的对象垃圾收集机制
2019/06/06 Python
python使用python-pptx删除ppt某页实例
2020/02/14 Python
安装python3.7编译器后如何正确安装opnecv的方法详解
2020/06/16 Python
西班牙第一的网上药房:PromoFarma.com
2017/04/17 全球购物
DJI美国:消费类无人机领域的领导者
2018/04/27 全球购物
美国最好的钓鱼、狩猎和划船装备商店:Bass Pro Shops
2018/12/02 全球购物
行政助理岗位职责范文
2013/12/03 职场文书
精彩的英文自荐信
2014/01/30 职场文书
春风行动实施方案
2014/03/28 职场文书
竞聘上岗演讲
2014/05/19 职场文书
拾金不昧通报表扬范文
2015/05/05 职场文书
办公室管理规章制度
2015/08/04 职场文书
运输公司工作总结
2015/08/11 职场文书