使用Keras建立模型并训练等一系列操作方式


Posted in Python onJuly 02, 2020

由于Keras是一种建立在已有深度学习框架上的二次框架,其使用起来非常方便,其后端实现有两种方法,theano和tensorflow。由于自己平时用tensorflow,所以选择后端用tensorflow的Keras,代码写起来更加方便。

1、建立模型

Keras分为两种不同的建模方式,

Sequential models:这种方法用于实现一些简单的模型。你只需要向一些存在的模型中添加层就行了。

Functional API:Keras的API是非常强大的,你可以利用这些API来构造更加复杂的模型,比如多输出模型,有向无环图等等。

这里采用sequential models方法。

构建序列模型。

def define_model():

  model = Sequential()

  # setup first conv layer
  model.add(Conv2D(32, (3, 3), activation="relu",
           input_shape=(120, 120, 3), padding='same')) # [10, 120, 120, 32]

  # setup first maxpooling layer
  model.add(MaxPooling2D(pool_size=(2, 2))) # [10, 60, 60, 32]

  # setup second conv layer
  model.add(Conv2D(8, kernel_size=(3, 3), activation="relu",
           padding='same')) # [10, 60, 60, 8]

  # setup second maxpooling layer
  model.add(MaxPooling2D(pool_size=(3, 3))) # [10, 20, 20, 8]

  # add bianping layer, 3200 = 20 * 20 * 8
  model.add(Flatten()) # [10, 3200]

  # add first full connection layer
  model.add(Dense(512, activation='sigmoid')) # [10, 512]

  # add dropout layer
  model.add(Dropout(0.5))

  # add second full connection layer
  model.add(Dense(4, activation='softmax')) # [10, 4]

  return model

可以看到定义模型时输出的网络结构。

使用Keras建立模型并训练等一系列操作方式

2、准备数据

def load_data(resultpath):
  datapath = os.path.join(resultpath, "data10_4.npz")
  if os.path.exists(datapath):
    data = np.load(datapath)
    X, Y = data["X"], data["Y"]
  else:
    X = np.array(np.arange(432000)).reshape(10, 120, 120, 3)
    Y = [0, 0, 1, 1, 2, 2, 3, 3, 2, 0]
    X = X.astype('float32')
    Y = np_utils.to_categorical(Y, 4)
    np.savez(datapath, X=X, Y=Y)
    print('Saved dataset to dataset.npz.')
  print('X_shape:{}\nY_shape:{}'.format(X.shape, Y.shape))
  return X, Y

使用Keras建立模型并训练等一系列操作方式

3、训练模型

def train_model(resultpath):
  model = define_model()

  # if want to use SGD, first define sgd, then set optimizer=sgd
  sgd = SGD(lr=0.001, decay=1e-6, momentum=0, nesterov=True)

  # select loss\optimizer\
  model.compile(loss=categorical_crossentropy,
         optimizer=Adam(), metrics=['accuracy'])
  model.summary()

  # draw the model structure
  plot_model(model, show_shapes=True,
        to_file=os.path.join(resultpath, 'model.png'))

  # load data
  X, Y = load_data(resultpath)

  # split train and test data
  X_train, X_test, Y_train, Y_test = train_test_split(
    X, Y, test_size=0.2, random_state=2)

  # input data to model and train
  history = model.fit(X_train, Y_train, batch_size=2, epochs=10,
            validation_data=(X_test, Y_test), verbose=1, shuffle=True)

  # evaluate the model
  loss, acc = model.evaluate(X_test, Y_test, verbose=0)
  print('Test loss:', loss)
  print('Test accuracy:', acc)

可以看到训练时输出的日志。因为是随机数据,没有意义,这里训练的结果不必计较,只是练习而已。

使用Keras建立模型并训练等一系列操作方式

保存下来的模型结构:

使用Keras建立模型并训练等一系列操作方式

4、保存与加载模型并测试

有两种保存方式

4.1 直接保存模型h5

保存:

def my_save_model(resultpath):

  model = train_model(resultpath)

  # the first way to save model
  model.save(os.path.join(resultpath, 'my_model.h5'))

加载:

def my_load_model(resultpath):

  # test data
  X = np.array(np.arange(86400)).reshape(2, 120, 120, 3)
  Y = [0, 1]
  X = X.astype('float32')
  Y = np_utils.to_categorical(Y, 4)

  # the first way of load model
  model2 = load_model(os.path.join(resultpath, 'my_model.h5'))
  model2.compile(loss=categorical_crossentropy,
         optimizer=Adam(), metrics=['accuracy'])

  test_loss, test_acc = model2.evaluate(X, Y, verbose=0)
  print('Test loss:', test_loss)
  print('Test accuracy:', test_acc)

  y = model2.predict_classes(X)
  print("predicct is: ", y)

使用Keras建立模型并训练等一系列操作方式

4.2 分别保存网络结构和权重

保存:

def my_save_model(resultpath):

  model = train_model(resultpath)

  # the secon way : save trained network structure and weights
  model_json = model.to_json()
  open(os.path.join(resultpath, 'my_model_structure.json'), 'w').write(model_json)
  model.save_weights(os.path.join(resultpath, 'my_model_weights.hd5'))

加载:

def my_load_model(resultpath):

  # test data
  X = np.array(np.arange(86400)).reshape(2, 120, 120, 3)
  Y = [0, 1]
  X = X.astype('float32')
  Y = np_utils.to_categorical(Y, 4)

  # the second way : load model structure and weights
  model = model_from_json(open(os.path.join(resultpath, 'my_model_structure.json')).read())
  model.load_weights(os.path.join(resultpath, 'my_model_weights.hd5'))
  model.compile(loss=categorical_crossentropy,
         optimizer=Adam(), metrics=['accuracy']) 

  test_loss, test_acc = model.evaluate(X, Y, verbose=0)
  print('Test loss:', test_loss)
  print('Test accuracy:', test_acc)

  y = model.predict_classes(X)
  print("predicct is: ", y)

使用Keras建立模型并训练等一系列操作方式

可以看到,两次的结果是一样的。

5、完整代码

from keras.models import Sequential
from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout
from keras.losses import categorical_crossentropy
from keras.optimizers import Adam
from keras.utils.vis_utils import plot_model
from keras.optimizers import SGD
from keras.models import model_from_json
from keras.models import load_model
from keras.utils import np_utils
import numpy as np
import os
from sklearn.model_selection import train_test_split

def load_data(resultpath):
  datapath = os.path.join(resultpath, "data10_4.npz")
  if os.path.exists(datapath):
    data = np.load(datapath)
    X, Y = data["X"], data["Y"]
  else:
    X = np.array(np.arange(432000)).reshape(10, 120, 120, 3)
    Y = [0, 0, 1, 1, 2, 2, 3, 3, 2, 0]
    X = X.astype('float32')
    Y = np_utils.to_categorical(Y, 4)
    np.savez(datapath, X=X, Y=Y)
    print('Saved dataset to dataset.npz.')
  print('X_shape:{}\nY_shape:{}'.format(X.shape, Y.shape))
  return X, Y

def define_model():
  model = Sequential()

  # setup first conv layer
  model.add(Conv2D(32, (3, 3), activation="relu",
           input_shape=(120, 120, 3), padding='same')) # [10, 120, 120, 32]

  # setup first maxpooling layer
  model.add(MaxPooling2D(pool_size=(2, 2))) # [10, 60, 60, 32]

  # setup second conv layer
  model.add(Conv2D(8, kernel_size=(3, 3), activation="relu",
           padding='same')) # [10, 60, 60, 8]

  # setup second maxpooling layer
  model.add(MaxPooling2D(pool_size=(3, 3))) # [10, 20, 20, 8]

  # add bianping layer, 3200 = 20 * 20 * 8
  model.add(Flatten()) # [10, 3200]

  # add first full connection layer
  model.add(Dense(512, activation='sigmoid')) # [10, 512]

  # add dropout layer
  model.add(Dropout(0.5))

  # add second full connection layer
  model.add(Dense(4, activation='softmax')) # [10, 4]

  return model

def train_model(resultpath):
  model = define_model()

  # if want to use SGD, first define sgd, then set optimizer=sgd
  sgd = SGD(lr=0.001, decay=1e-6, momentum=0, nesterov=True)

  # select loss\optimizer\
  model.compile(loss=categorical_crossentropy,
         optimizer=Adam(), metrics=['accuracy'])
  model.summary()

  # draw the model structure
  plot_model(model, show_shapes=True,
        to_file=os.path.join(resultpath, 'model.png'))

  # load data
  X, Y = load_data(resultpath)

  # split train and test data
  X_train, X_test, Y_train, Y_test = train_test_split(
    X, Y, test_size=0.2, random_state=2)

  # input data to model and train
  history = model.fit(X_train, Y_train, batch_size=2, epochs=10,
            validation_data=(X_test, Y_test), verbose=1, shuffle=True)

  # evaluate the model
  loss, acc = model.evaluate(X_test, Y_test, verbose=0)
  print('Test loss:', loss)
  print('Test accuracy:', acc)

  return model

def my_save_model(resultpath):

  model = train_model(resultpath)

  # the first way to save model
  model.save(os.path.join(resultpath, 'my_model.h5'))

  # the secon way : save trained network structure and weights
  model_json = model.to_json()
  open(os.path.join(resultpath, 'my_model_structure.json'), 'w').write(model_json)
  model.save_weights(os.path.join(resultpath, 'my_model_weights.hd5'))

def my_load_model(resultpath):

  # test data
  X = np.array(np.arange(86400)).reshape(2, 120, 120, 3)
  Y = [0, 1]
  X = X.astype('float32')
  Y = np_utils.to_categorical(Y, 4)

  # the first way of load model
  model2 = load_model(os.path.join(resultpath, 'my_model.h5'))
  model2.compile(loss=categorical_crossentropy,
          optimizer=Adam(), metrics=['accuracy'])

  test_loss, test_acc = model2.evaluate(X, Y, verbose=0)
  print('Test loss:', test_loss)
  print('Test accuracy:', test_acc)

  y = model2.predict_classes(X)
  print("predicct is: ", y)

  # the second way : load model structure and weights
  model = model_from_json(open(os.path.join(resultpath, 'my_model_structure.json')).read())
  model.load_weights(os.path.join(resultpath, 'my_model_weights.hd5'))
  model.compile(loss=categorical_crossentropy,
         optimizer=Adam(), metrics=['accuracy'])

  test_loss, test_acc = model.evaluate(X, Y, verbose=0)
  print('Test loss:', test_loss)
  print('Test accuracy:', test_acc)

  y = model.predict_classes(X)
  print("predicct is: ", y)

def main():
  resultpath = "result"
  #train_model(resultpath)
  #my_save_model(resultpath)
  my_load_model(resultpath)


if __name__ == "__main__":
  main()

以上这篇使用Keras建立模型并训练等一系列操作方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python Mysql自动备份脚本
Jul 14 Python
python连接mysql数据库示例(做增删改操作)
Dec 31 Python
Python struct模块解析
Jun 12 Python
Python实现的科学计算器功能示例
Aug 04 Python
疯狂上涨的Python 开发者应从2.x还是3.x着手?
Nov 16 Python
Python cookbook(数据结构与算法)根据字段将记录分组操作示例
Mar 19 Python
python使用tkinter库实现五子棋游戏
Jun 18 Python
深入浅析Python 命令行模块 Click
Mar 11 Python
Python3之外部文件调用Django程序操作model等文件实现方式
Apr 07 Python
jupyter 中文乱码设置编码格式 避免控制台输出的解决
Apr 20 Python
在vscode中启动conda虚拟环境的思路详解
Dec 25 Python
Python基本数据类型之字符串str
Jul 21 Python
python解释器安装教程的方法步骤
Jul 02 #Python
Python分析最近大火的网剧《隐秘的角落》
Jul 02 #Python
keras训练浅层卷积网络并保存和加载模型实例
Jul 02 #Python
Python RabbitMQ实现简单的进程间通信示例
Jul 02 #Python
利用scikitlearn画ROC曲线实例
Jul 02 #Python
Python使用文件操作实现一个XX信息管理系统的示例
Jul 02 #Python
keras用auc做metrics以及早停实例
Jul 02 #Python
You might like
人族 TERRAN 概述
2020/03/14 星际争霸
利用curl 多线程 模拟 并发的详解
2013/06/14 PHP
php file_get_contents抓取Gzip网页乱码的三种解决方法
2013/11/12 PHP
一个PHP针对数字的加密解密类
2014/03/20 PHP
php视频拍照上传头像功能实现代码分享
2015/10/08 PHP
PHP token验证生成原理实例分析
2019/06/05 PHP
Laravel框架查询构造器 CURD操作示例
2019/09/04 PHP
laravel框架使用FormRequest进行表单验证,验证异常返回JSON操作示例
2020/02/18 PHP
通过js脚本复制网页上的一个表格的不错实现方法
2006/12/29 Javascript
2007/12/23更新创意无限,简单实用(javascript log)
2007/12/24 Javascript
浅谈json取值(对象和数组)
2016/06/24 Javascript
EasyUI加载完Html内容样式渲染完成后显示
2016/07/25 Javascript
JS 在数组指定位置插入/删除数据的方法
2017/01/12 Javascript
JS简单实现数组去重的方法示例
2017/03/27 Javascript
使用Vue写一个datepicker的示例
2018/01/27 Javascript
JavaScript实现短暂提示框功能
2018/04/04 Javascript
基于vue循环列表时点击跳转页面的方法
2018/08/31 Javascript
js通过循环多张图片实现动画效果
2019/12/19 Javascript
[54:10]完美世界DOTA2联赛PWL S2 Magma vs FTD 第二场 11.29
2020/12/03 DOTA
[01:07:57]DOTA2-DPC中国联赛 正赛 Ehome vs Magma BO3 第二场 1月19日
2021/03/11 DOTA
python使用matplotlib库生成随机漫步图
2018/08/27 Python
python2与python3的print及字符串格式化小结
2018/11/30 Python
基于python修改srt字幕的时间轴
2020/02/03 Python
Python关于__name__属性的含义和作用详解
2020/02/19 Python
Pygame的程序开始示例代码
2020/05/07 Python
关于多种方式完美解决Python pip命令下载第三方库的问题
2020/12/21 Python
详解Open Folder as PyCharm Project怎么添加的方法
2020/12/29 Python
网络工程师的自我评价
2013/10/02 职场文书
前台文员岗位职责及工作流程
2013/11/19 职场文书
周年庆典邀请函范文
2014/01/24 职场文书
环保标语口号
2014/06/13 职场文书
战略合作意向书
2014/07/29 职场文书
高中生学习计划书
2014/09/15 职场文书
2014班子成员自我剖析材料思想汇报
2014/10/01 职场文书
JS实现简单控制视频播放倍速的实例代码
2021/04/18 Javascript
对PyTorch中inplace字段的全面理解
2021/05/22 Python