使用OpenCV对车道进行实时检测的实现示例代码


Posted in Python onJune 19, 2020

项目介绍

下图中的两条线即为车道:

使用OpenCV对车道进行实时检测的实现示例代码

我们的任务就是通过 OpenCV 在一段视频(或摄像头)中实时检测出车道并将其标记出来。其效果如下图所示:

使用OpenCV对车道进行实时检测的实现示例代码

这里使用的代码来源于磐怼怼大神,此文章旨在对其代码进行解释。

实现步骤

1、将视频的所有帧读取为图片;

2、创建掩码并应用到这些图片上;

3、图像阈值化;

4、用霍夫线变换检测车道;

5、将车道画到每张图片上;

6、将所有图片合并为视频。

代码实现

1、导入需要的库

import os
import re
import cv2
import numpy as np
from tqdm import notebook
import matplotlib.pyplot as plt

其中 tqdm.notebook 是用来显示进度条的。

2、将图片(视频的每一帧)加载进来

这里我们已经将视频的每一帧读取为图片了,并将它们都放进 frames 文件夹。

# 获取帧的文件名
col_frames = os.listdir('frames/') # 读取 frames 文件夹下的所有图片
col_frames.sort(key=lambda f: int(re.sub('\D', '', f))) # 按名称对图片进行排序

# 加载帧
col_images=[]
for i in notebook.tqdm(col_frames):
  img = cv2.imread('frames/'+i)
  col_images.append(img) # 将所有图片添加进 col_images 列表

3、选择一张图片进行处理

3.1 选定一张图片

# 指定一个索引
idx = 457

# plot frame
plt.figure(figsize=(10,10))
plt.imshow(col_images[idx][:,:,0], cmap= "gray")
plt.show()

使用OpenCV对车道进行实时检测的实现示例代码

3.2 创建掩码

# 创建0矩阵
stencil = np.zeros_like(col_images[idx][:,:,0])

# 指定多边形的坐标
polygon = np.array([[50,270], [220,160], [360,160], [480,270]])

# 用1填充多边形
cv2.fillConvexPoly(stencil, polygon, 1)

# 画出多边形
plt.figure(figsize=(10,10))
plt.imshow(stencil, cmap= "gray")
plt.show()

使用OpenCV对车道进行实时检测的实现示例代码

3.3 将掩码应用到图片上

# 应用该多边形作为掩码
img = cv2.bitwise_and(col_images[idx][:,:,0], col_images[idx][:,:,0], mask=stencil)

# 画出掩码后的图片
plt.figure(figsize=(10,10))
plt.imshow(img, cmap= "gray")
plt.show()

这里的按位与操作 cv2.bitwise_and() 可以参考OpenCV 之按位运算举例解析一文。

使用OpenCV对车道进行实时检测的实现示例代码

3.4 图像阈值化

# 应用图像阈值化
ret, thresh = cv2.threshold(img, 130, 145, cv2.THRESH_BINARY)

# 画出图像
plt.figure(figsize=(10,10))
plt.imshow(thresh, cmap= "gray")
plt.show()

其中 cv2.threshold 函数的用法可以参考Opencv之图像阈值一文。

使用OpenCV对车道进行实时检测的实现示例代码

3.5 霍夫线变换检测车道

lines = cv2.HoughLinesP(thresh, 1.0, np.pi/180, 30, maxLineGap=200)

# 创建原始帧的副本
dmy = col_images[idx][:,:,0].copy()

# 霍夫线
for line in lines:
  x1, y1, x2, y2 = line[0] # 提取出霍夫线的坐标
  cv2.line(dmy, (x1, y1), (x2, y2), (255, 0, 0), 3) # 将霍夫线画在帧上

# 画出帧
plt.figure(figsize=(10,10))
plt.imshow(dmy, cmap= "gray")
plt.show()

cv2.HoughLinesP() 函数介绍:

lines = HoughLinesP(image, rho, theta, threshold, minLineLength=None, maxLineGap=None)

输入:

  • image: 必须是二值图像;
  • rho: 线段以像素为单位的距离精度,double类型的,推荐用1.0
  • theta: 线段以弧度为单位的角度精度,推荐用numpy.pi/180
  • threshod: 累加平面的阈值参数,int类型,超过设定阈值才被检测出线段,值越大,基本上意味着检出的线段越长,检出的线段个数越少。
  • minLineLength:线段以像素为单位的最小长度。
  • maxLineGap:同一方向上两条线段判定为一条线段的最大允许间隔,超过了设定值,则把两条线段当成一条线段。

输出:

lines:一个三维矩阵,其形状符合 (m, 1, n),其中 m 表示直线个数,n 表示每条直线的两端坐标。

使用OpenCV对车道进行实时检测的实现示例代码

4、对每张图片进行上一步骤的处理后写入视频

4.1 定义视频格式

# 输出视频路径
pathOut = 'roads_v2.mp4'

# 视频每秒的帧数
fps = 30.0

# 视频中每一帧的尺寸
height, width = img.shape
size = (width,height)

# 写入视频
out = cv2.VideoWriter(pathOut,cv2.VideoWriter_fourcc(*'DIVX'), fps, size)

4.2 处理所有图片并写入视频文件

for img in notebook.tqdm(col_images):

  # 应用帧掩码
  masked = cv2.bitwise_and(img[:,:,0], img[:,:,0], mask=stencil)

  # 应用图像阈值化
  ret, thresh = cv2.threshold(masked, 130, 145, cv2.THRESH_BINARY)

  # 应用霍夫线变换
  lines = cv2.HoughLinesP(thresh, 1, np.pi/180, 30, maxLineGap=200)
  dmy = img.copy()

  #画出检测到的线
  try:
    for line in lines:
      x1, y1, x2, y2 = line[0]
      cv2.line(dmy, (x1, y1), (x2, y2), (255, 0, 0), 3)

    out.write(dmy)

  except TypeError: 
    out.write(img)

out.release()

完整代码

import os
import re
import cv2
import numpy as np
from tqdm import notebook
import matplotlib.pyplot as plt

col_frames = os.listdir('frames/')
col_frames.sort(key=lambda f: int(re.sub('\D', '', f)))

col_images=[]
for i in notebook.tqdm(col_frames):
  img = cv2.imread('frames/'+i)
  col_images.append(img)

stencil = np.zeros_like(col_images[0][:,:,0])
polygon = np.array([[50,270], [220,160], [360,160], [480,270]])
cv2.fillConvexPoly(stencil, polygon, 1)

pathOut = 'roads_v2.mp4'

fps = 30.0

height, width = img.shape
size = (width,height)

out = cv2.VideoWriter(pathOut,cv2.VideoWriter_fourcc(*'DIVX'), fps, size)

for img in notebook.tqdm(col_images):

  masked = cv2.bitwise_and(img[:,:,0], img[:,:,0], mask=stencil)

  ret, thresh = cv2.threshold(masked, 130, 145, cv2.THRESH_BINARY)

  lines = cv2.HoughLinesP(thresh, 1, np.pi/180, 30, maxLineGap=200)
  dmy = img.copy()

  try:
    for line in lines:
      x1, y1, x2, y2 = line[0]
      cv2.line(dmy, (x1, y1), (x2, y2), (255, 0, 0), 3)

    out.write(dmy)

  except TypeError: 
    out.write(img)

out.release()

到此这篇关于使用OpenCV对车道进行实时检测的实现示例代码的文章就介绍到这了,更多相关OpenCV 车道实时检测内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python性能优化的20条建议
Oct 25 Python
Python3处理HTTP请求的实例
May 10 Python
对python 数据处理中的LabelEncoder 和 OneHotEncoder详解
Jul 11 Python
基于python实现聊天室程序
Jul 27 Python
Pandas过滤dataframe中包含特定字符串的数据方法
Nov 07 Python
python脚本实现音频m4a格式转成MP3格式的实例代码
Oct 09 Python
pandas的resample重采样的使用
Apr 24 Python
python中wheel的用法整理
Jun 15 Python
Python使用sys.exc_info()方法获取异常信息
Jul 23 Python
python3 通过 pybind11 使用Eigen加速代码的步骤详解
Dec 07 Python
OpenCV+Python3.5 简易手势识别的实现
Dec 21 Python
python实现剪贴板的操作
Jul 01 Python
为什么python比较流行
Jun 19 #Python
查看keras的默认backend实现方式
Jun 19 #Python
Python图像阈值化处理及算法比对实例解析
Jun 19 #Python
OpenCV 之按位运算举例解析
Jun 19 #Python
Python实现ElGamal加密算法的示例代码
Jun 19 #Python
python 字符串的驻留机制及优缺点
Jun 19 #Python
Keras自动下载的数据集/模型存放位置介绍
Jun 19 #Python
You might like
PHP生成静态页面详解
2006/12/05 PHP
学习php过程中的一些注意点的总结
2013/10/25 PHP
关于PHP中Session文件过多的问题及session文件保存位置
2016/03/17 PHP
PHP将URL转换成短网址的算法分享
2016/09/13 PHP
PHP构造函数与析构函数用法示例
2016/09/28 PHP
PHP基于redis计数器类定义与用法示例
2018/02/08 PHP
jquery select下拉框操作的一些说明
2010/04/02 Javascript
JavaScript去掉空格的方法集合
2010/12/28 Javascript
javascript实现全角与半角字符的转换
2015/01/07 Javascript
jQuery插件开发汇总
2016/05/15 Javascript
JS获取input file绝对路径的方法(推荐)
2016/08/02 Javascript
原生JS实现的放大镜效果实例代码
2016/10/15 Javascript
EditPlus 正则表达式 实战(3)
2016/12/15 Javascript
用nodeJS搭建本地文件服务器的几种方法小结
2017/03/16 NodeJs
Angular2实现自定义双向绑定属性
2017/03/22 Javascript
jQuery EasyUI 组件加上“清除”功能实例详解
2017/04/11 jQuery
Javascript的console['']常用输入方法汇总
2018/04/26 Javascript
layui table 参数设置方法
2018/08/14 Javascript
实例详解ztree在vue项目中使用并且带有搜索功能
2018/08/24 Javascript
详解Angular6学习笔记之主从组件
2018/09/05 Javascript
ios设备中angularjs无法改变页面title的解决方法
2018/09/13 Javascript
一步一步的了解webpack4的splitChunk插件(小结)
2018/09/17 Javascript
JavaScript中的惰性载入函数及优势
2020/02/18 Javascript
[02:02]2018DOTA2亚洲邀请赛Mineski赛前采访
2018/04/04 DOTA
Python运算符重载用法实例
2015/05/28 Python
python selenium 获取标签的属性值、内容、状态方法
2018/06/22 Python
对python PLT中的image和skimage处理图片方法详解
2019/01/10 Python
500行python代码实现飞机大战
2020/04/24 Python
科颜氏香港官方网店:Kiehl’s香港
2021/03/07 全球购物
DELPHI面试题研发笔试试卷
2015/11/08 面试题
安全生产目标管理责任书
2014/07/25 职场文书
2015年化验室工作总结
2015/04/23 职场文书
《老人与海鸥》教学反思
2016/02/16 职场文书
2019年励志签名:致拼搏路上的自己
2019/10/11 职场文书
python中如何对多变量连续赋值
2021/06/03 Python
win sever 2022如何占用操作主机角色
2022/06/25 Servers