使用opencv识别图像红色区域,并输出红色区域中心点坐标


Posted in Python onJune 02, 2020

适用小白,大佬勿喷

个人配置:vs2013 ; opencv 3.0 ;

直接上效果图

使用opencv识别图像红色区域,并输出红色区域中心点坐标

注意:右下角的水印把中心点挡住了,要仔细看才能看到

下面是代码:

#include <iostream>
#include<opencv2\opencv.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#define PI 3.1415926
 
using namespace cv;
using namespace std;
 
void RGB2HSV(double red, double green, double blue, double& hue, double& saturation, double& intensity)
{
	 
	double r, g, b;
	double h, s, i;
 
	double sum;
	double minRGB, maxRGB;
	double theta;
 
	r = red / 255.0;
	g = green / 255.0;
	b = blue / 255.0;
 
	minRGB = ((r<g) ? (r) : (g));
	minRGB = (minRGB<b) ? (minRGB) : (b);
 
	maxRGB = ((r>g) ? (r) : (g));
	maxRGB = (maxRGB>b) ? (maxRGB) : (b);
 
	sum = r + g + b;
	i = sum / 3.0;
 
	if (i<0.001 || maxRGB - minRGB<0.001)
	{
		h = 0.0;
		s = 0.0;
	}
	else
	{
		s = 1.0 - 3.0*minRGB / sum;
		theta = sqrt((r - g)*(r - g) + (r - b)*(g - b));
		theta = acos((r - g + r - b)*0.5 / theta);
		if (b <= g)
			h = theta;
		else
			h = 2 * PI - theta;
		if (s <= 0.01)
			h = 0;
	}
 
	hue = (int)(h * 180 / PI);
	saturation = (int)(s * 100);
	intensity = (int)(i * 100);
}
 
Mat picture_red(Mat input)
{
	
	Mat frame;
	Mat srcImg = input;
	frame = srcImg;
	waitKey(1);
	int width = srcImg.cols;
	int height = srcImg.rows;
 
	int x, y;
	double B = 0.0, G = 0.0, R = 0.0, H = 0.0, S = 0.0, V = 0.0;
	Mat vec_rgb = Mat::zeros(srcImg.size(), CV_8UC1);
	for (x = 0; x < height; x++)
	{
		for (y = 0; y < width; y++)
		{
			B = srcImg.at<Vec3b>(x, y)[0];
			G = srcImg.at<Vec3b>(x, y)[1];
			R = srcImg.at<Vec3b>(x, y)[2];
			RGB2HSV(R, G, B, H, S, V);
			//红色范围,范围参考的网上。可以自己调
			if ((H >= 312 && H <= 360) && (S >= 17 && S <= 100) && (V>18 && V < 100))
				vec_rgb.at<uchar>(x, y) = 255;
			/*cout << H << "," << S << "," << V << endl;*/
		}
	}
	/*imshow("hsv", vec_rgb);*/
	return vec_rgb;
	
 
}
 
void O_x1y1(Mat in, double *x1, double *y1, double *x2, double *y2)
 
{
	Mat matSrc = in;
	/*Mat matSrc = imread("qwer9.png", 0);*/
 
	GaussianBlur(matSrc, matSrc, Size(5, 5), 0);//高斯滤波,除噪点
 
	vector<vector<Point> > contours;//contours的类型,双重的vector
 
	vector<Vec4i> hierarchy;//Vec4i是指每一个vector元素中有四个int型数据。
 
	//阈值
 
	threshold(matSrc, matSrc, 100, 255, THRESH_BINARY);//图像二值化
 
	//寻找轮廓,这里注意,findContours的输入参数要求是二值图像,二值图像的来源大致有两种,第一种用threshold,第二种用canny
 
	findContours(matSrc.clone(), contours, hierarchy, CV_RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point(0, 0));
 
	/// 计算矩
 
	vector<Moments> mu(contours.size());
 
	for (int i = 0; i < contours.size(); i++)
 
	{
		mu[i] = moments(contours[i], false);
	}
 
	/// 计算矩中心:
 
	vector<Point2f> mc(contours.size());
 
	for (int i = 0; i < contours.size(); i++)
 
	{
		mc[i] = Point2f(mu[i].m10 / mu[i].m00, mu[i].m01 / mu[i].m00);
	}
 
	/// 绘制轮廓
 
	Mat drawing = Mat::zeros(matSrc.size(), CV_8UC1);
 
	for (int i = 0; i < contours.size(); i++)
 
	{
		Scalar color = Scalar(255);
 
		//drawContours(drawing, contours, i, color, 2, 8, hierarchy, 0, Point());//绘制轮廓函数
 
		circle(drawing, mc[i], 4, color, -1, 8, 0);
		
	}
	*x1 = mc[0].x;
	*y1 = mc[0].y;
	*x2 = mc[contours.size()-1].x;
	*y2 = mc[contours.size() - 1].y;
	
	imshow("outImage", drawing);
}
 
int main()
{
	
	double xx1, yy1, xx2, yy2;
	double x1, y1, x2, y2;
 
	Mat matSrc = imread("qwer4.png");
 
	Mat middle = picture_red(matSrc);
	O_x1y1(middle, &xx1, &yy1, &xx2, &yy2);
	x1 = xx1;
	y1 = yy1;
	x2 = xx2;
	y2 = yy2;
 
	imshow("原图", matSrc);
	imshow("red", picture_red(matSrc));
 
	cout << "红点:" << x1 << ", " << y1 << "; " << "红点1:" << x2 << ", " << y2 << endl;
	waitKey();
 
	return 0;
}

如有不足,望指点!

补充知识:opencv 识别网球 ,或者绿色的小球 输出重心坐标

我就废话不多说了,大家还是直接看代码吧!

void image_process(IplImage *image)
 {
 int iLowH =26; 
 int iHighH = 69; 
 int iLowS = 42;  
 int iHighS = 206;  
 int iLowV = 0; 
 int iHighV = 198;
  CvMemStorage* storage2 = cvCreateMemStorage();
  CvSeq* contour3 = NULL;
  CvMoments moments; 
  CvMat *region; 
  CvPoint pt1,pt2;
  double m00 = 0, m10, m01, mu20, mu11, mu02, inv_m00; 
  double a, b, c; 
  int xc, yc; 
 
  CvMemStorage* storage = cvCreateMemStorage();
 	CvSeq * circles=NULL;
 
  // Circle cir[6];
  CvPoint P0;
  CvPoint CenterPoint;
  // cvNamedWindow("win1"); 
	//cvShowImage("win1",image);
	//cvNamedWindow("image",CV_WINDOW_AUTOSIZE);//用于显示图像的窗口
	//cvNamedWindow("hsv",CV_WINDOW_AUTOSIZE);	
	//cvNamedWindow("saturation",CV_WINDOW_AUTOSIZE);
	//cvNamedWindow("value",CV_WINDOW_AUTOSIZE);
	//cvNamedWindow("pImg8u",1);
	IplImage *hsv=cvCreateImage(cvGetSize(image),8,3);//给hsv色系的图像申请空间
	IplImage *hue=cvCreateImage(cvGetSize(image),8,1); //色调
	IplImage *saturation=cvCreateImage(cvGetSize(image),8,1);//饱和度
	IplImage *value=cvCreateImage(cvGetSize(image),8,1);//亮度
	IplImage *imgThresholded=cvCreateImage(cvGetSize(hue),8,1); 
	cvNamedWindow("yuan",1);
	cvCvtColor(image,hsv,CV_BGR2HSV);//将RGB色系转为HSV色系
	cvShowImage("yuan",image);
	//cvShowImage("hsv",hsv);
	cvSplit(hsv, hue, 0, 0, 0 );//分离三个通道
	cvSplit(hsv, 0, saturation, 0, 0 );
	cvSplit(hsv, 0, 0, value, 0 );
	int value_1=0;
	 
	cvInRangeS(
	  hsv, 
	  cvScalar(iLowH, iLowS, iLowV), 
	  cvScalar(iHighH, iHighS, iHighV),
	  imgThresholded
	  ); 
	 cvNamedWindow("imgThresholded",1);
	 cvShowImage("imgThresholded",imgThresholded);
 
	 IplImage*pContourImg= cvCreateImage( cvGetSize(image), 8, 1 ); 
	cvCopy(imgThresholded,pContourImg);
	 cvNamedWindow("pContourImg",1);
	 cvShowImage("pContourImg",pContourImg);
	 IplImage* dst = cvCreateImage( cvGetSize(image), 8, 3 ); 
	CvMemStorage* storage3 = cvCreateMemStorage(0); 
	CvSeq* contour = 0; 
	// 提取轮廓 
  int contour_num = cvFindContours(pContourImg, storage3, &contour, sizeof(CvContour), CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE); 
  cvZero(dst);    // 清空数组 
  CvSeq *_contour = contour;  
  double maxarea = 100; 
  double minarea = 10; 
  int m = 0; 
  for( ; contour != 0; contour = contour->h_next )  
  {  
 
    double tmparea = fabs(cvContourArea(contour)); 
    if(tmparea < minarea)   
    {  
      cvSeqRemove(contour, 0); // 删除面积小于设定值的轮廓 
      continue; 
    }  
    CvRect aRect = cvBoundingRect( contour, 0 );  
    if ((aRect.width/aRect.height)<1)  
    {  
      cvSeqRemove(contour, 0); //删除宽高比例小于设定值的轮廓 
      continue; 
    }  
    if(tmparea > maxarea)  
    {  
      maxarea = tmparea; 
    }  
    m++; 
    // 创建一个色彩值 
  //  CvScalar color = CV_RGB( 0, 0, 255 ); 
 
   /*  max_level 绘制轮廓的最大等级。如果等级为0,绘制单独的轮廓。如果为1,绘制轮廓及在其后的相同的级别下轮廓 
    如果值为2,所有的轮廓。如果等级为2,绘制所有同级轮廓及所有低一级轮廓,诸此种种 
    如果值为负数,函数不绘制同级轮廓,但会升序绘制直到级别为abs(max_level)-1的子轮廓 */ 
   //  cvDrawContours(dst, contour, color, color, 0, 1, 8);  //绘制外部和内部的轮廓 
  }  
  contour = _contour; 
  int count = 0; double tmparea=0;
  for(; contour != 0; contour = contour->h_next) 
  {  
    count++; 
     tmparea = fabs(cvContourArea(contour)); 
    if (tmparea >= maxarea)  
    {  
      CvScalar color = CV_RGB( 0, 255, 0); 
      cvDrawContours(dst, contour, color, color, -1, 1, 8); 
			cout<<"222"<<endl;
			cout<<"面积为"<<tmparea<<endl;
			cout<<endl;
			CvRect aRect = cvBoundingRect( contour, 0 ); 
			//找重心
			{
				CvPoint2D32f center = cvPoint2D32f(0, 0);
				int countOfPoint = 0;
				for(int i = aRect.x; i < aRect.x + aRect.width; ++i){
					for(int j = aRect.y; j < aRect.y + aRect.height; ++j){
						if(*(image->imageData + image->widthStep * j + i) != 0){
							center.x += i;
							center.y += j;
							countOfPoint++;
						}
					}
				}
 
				center.x /= countOfPoint;
				center.y /= countOfPoint;
				cout<<"重心坐标为x:"<<center.x<<endl;
     		cout<<"重心坐标为y:"<<center.y<<endl;
				cvCircle(dst, cvPoint(center.x, center.y), 5, cvScalar(0, 255), 2);
			}
		}
 // //Threshold the image
 //  cvErode(imgThresholded,imgThresholded);
 //  cvErode(imgThresholded,imgThresholded);
	 //cvErode(imgThresholded,imgThresholded);
	 //cvErode(imgThresholded,imgThresholded);	  
	 //IplImage* pImg8u=cvCloneImage(imgThresholded);
	
	 //cvCanny(pImg8u, pImg8u,40, 50, 5);
	 //cvShowImage("pImg8u",pImg8u);
	 //circles=cvHoughCircles(pImg8u,storage,CV_HOUGH_GRADIENT,
		//2,  //最小分辨率,应当>=1
		//pImg8u->height/15,  //该参数是让算法能明显区分的两个不同圆之间的最小距离
		//80,  //用于Canny的边缘阀值上限,下限被置为上限的一半
		//65,  //累加器的阀值
		//25,   //最小圆半径 
		//50   //最大圆半径
		//);
 }
 
	cvShowImage( "contour", dst );
	}

以上这篇使用opencv识别图像红色区域,并输出红色区域中心点坐标就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python实现的石头剪子布代码分享
Aug 22 Python
Python2.x版本中cmp()方法的使用教程
May 14 Python
使用pdb模块调试Python程序实例
Jun 02 Python
一篇文章入门Python生态系统(Python新手入门指导)
Dec 11 Python
python进程管理工具supervisor的安装与使用教程
Sep 05 Python
Python中return self的用法详解
Jul 27 Python
Python http接口自动化测试框架实现方法示例
Dec 06 Python
python实现点击按钮修改数据的方法
Jul 17 Python
Django后端接收嵌套Json数据及解析详解
Jul 17 Python
python滑块验证码的破解实现
Nov 10 Python
Django之form组件自动校验数据实现
Jan 14 Python
TensorFlow keras卷积神经网络 添加L2正则化方式
May 22 Python
什么是Python中的顺序表
Jun 02 #Python
opencv 实现特定颜色线条提取与定位操作
Jun 02 #Python
Python爬虫入门有哪些基础知识点
Jun 02 #Python
Python实现进度条和时间预估的示例代码
Jun 02 #Python
python爬虫容易学吗
Jun 02 #Python
基于Python词云分析政府工作报告关键词
Jun 02 #Python
使用OpenCV获取图像某点的颜色值,并设置某点的颜色
Jun 02 #Python
You might like
php 数学运算验证码实现代码
2009/10/11 PHP
ThinkPHP调试模式与日志记录概述
2014/08/22 PHP
php原生数据库分页的代码实例
2019/02/18 PHP
一次因composer错误使用引发的问题与解决
2019/03/06 PHP
Visual Studio中的jQuery智能提示设置方法
2010/03/27 Javascript
jQuery.ajax 用户登录验证代码
2010/10/29 Javascript
用js来解决ajax读取页面乱码
2010/11/28 Javascript
JavaScript取得鼠标绝对位置程序代码介绍
2012/09/16 Javascript
AngularJS表单编辑提交功能实例
2015/02/13 Javascript
JavaScript中的anchor()方法使用详解
2015/06/08 Javascript
Jquery promise实现一张一张加载图片
2015/11/13 Javascript
纯css下拉菜单 无需js
2016/08/15 Javascript
jQuery解决input元素的blur事件和其他非表单元素的click事件冲突问题
2016/08/15 Javascript
Node.js读写文件之批量替换图片的实现方法
2016/09/07 Javascript
jQuery 如何实现一个滑动按钮开关
2016/12/01 Javascript
分享一个精简的vue.js 图片lazyload插件实例
2017/03/13 Javascript
利用js-cookie实现前端设置缓存数据定时失效
2019/06/18 Javascript
[02:13] 完美世界DOTA2联赛PWL DAY5集锦
2020/11/03 DOTA
Python用于学习重要算法的模块pygorithm实例浅析
2018/08/16 Python
python使用Plotly绘图工具绘制柱状图
2019/04/01 Python
如何用Python制作微信好友个性签名词云图
2019/06/28 Python
Python PIL读取的图像发生自动旋转的实现方法
2019/07/05 Python
解决在pycharm运行代码,调用CMD窗口的命令运行显示乱码问题
2019/08/23 Python
Python使用os.listdir和os.walk获取文件路径
2020/05/21 Python
Tensorflow之MNIST CNN实现并保存、加载模型
2020/06/17 Python
Django如何继承AbstractUser扩展字段
2020/11/27 Python
python matlab库简单用法讲解
2020/12/31 Python
一些.net面试题
2014/10/06 面试题
线程问题:wait()方法是定义在哪个类里面
2015/07/07 面试题
检查接待方案
2014/02/27 职场文书
经典演讲稿开场白
2014/08/25 职场文书
党支部反对四风思想汇报
2014/10/10 职场文书
个人查摆问题自查报告
2014/10/16 职场文书
教师年度考核自我评鉴
2015/08/11 职场文书
爱岗敬业先进典型事迹材料(2016推荐版)
2016/02/26 职场文书
忘记Grafana不要紧2种Grafana重置admin密码方法详细步骤
2022/04/07 Servers