Opencv图像处理:如何判断图片里某个颜色值占的比例


Posted in Python onJune 03, 2020

一、功能

这里的需求是,判断摄像头有没有被物体遮挡。这里只考虑用手遮挡---->判断黑色颜色的范围。

二、使用OpenCV的Mat格式图片遍历图片

下面代码里,传入的图片的尺寸是640*480,判断黑色范围。

/*
在图片里查找指定颜色的比例
*/
int Widget::Mat_color_Find(QImage qimage)
{
  Mat image = QImage2cvMat(qimage);//将图片加载进来
  int num = 0;//记录颜色的像素点
  float rate;//要计算的百分率
  //遍历图片的每一个像素点
  for(int i = 0; i < image.rows;i++) //行数
  {
   for(int j = 0; j <image.cols;j++) //列数
   {
    //对该像素是否为指定颜色进行判断 BGR 像素点
    //OpenCV 中 MAT类的默认三原色通道顺序BGR
    /*
   动态地址访问像素语法:image.at<Vec3b>(i,j)[0]、image.at<uchar>(i, j)
   访问三通道图像的单个像素:
   int b = image.at<Vec3b>(i, j)[0];
   int g = image.at<Vec3b>(i, j)[1];
   int r = image.at<Vec3b>(i, j)[2];
   对于三通道图像,每个像素存储了三个值,分别为蓝色、绿色、红色通道上的数值。
   int gray_data = image.at<uchar>(i, j);
   用来访问灰度图像的单个像素。对于灰度图像,每个像素只存储一个值
   */
    if((image.at<Vec3b>(i, j)[0] <= 120 &&
     image.at<Vec3b>(i, j)[1] <= 120 &&
     image.at<Vec3b>(i, j)[2] <= 120))
    {
     num++;
    }
   }
  }
  rate = (float)num / (float)(image.rows * image.cols);
 
  //阀值为 0.249255 表示为全黑
  if(rate>0.20)
  {
   qDebug()<<":Mat:故意遮挡摄像头";
  }
  qDebug()<<"Mat:比例"<<rate;
  return 0;
}
 
 
Mat Widget::QImage2cvMat(QImage image)
{
 Mat mat;
 switch(image.format())
 {
 case QImage::Format_ARGB32:
 case QImage::Format_RGB32:
 case QImage::Format_ARGB32_Premultiplied:
  mat = Mat(image.height(), image.width(), CV_8UC4, (void*)image.constBits(), image.bytesPerLine());
  break;
 case QImage::Format_RGB888:
  mat = Mat(image.height(), image.width(), CV_8UC3, (void*)image.constBits(), image.bytesPerLine());
  cvtColor(mat, mat, CV_BGR2RGB);
  break;
 case QImage::Format_Indexed8:
  mat = Mat(image.height(), image.width(), CV_8UC1, (void*)image.constBits(), image.bytesPerLine());
  break;
 }
 return mat;
}

三、使用QImage遍历像素点

/*
在图片里查找指定颜色的比例
*/
int Widget::qimage_color_Find(QImage qimage)
{
 int num = 0;//记录颜色的像素点
 float rate;//要计算的百分率
 quint8 r,g,b;
 //遍历图片的每一个像素点
 for(int i = 0; i < qimage.height();i++) //行数
 {
  for(int j = 0; j <qimage.width();j++) //列数
  {
   QRgb rgb=qimage.pixel(j,i);
   r=qRed(rgb);
   g=qGreen(rgb);
   b=qBlue(rgb);
 
   if((r <= 120 && g <= 120 && b <= 120))
   {
    num++;
   }
  }
 }
 rate = (float)num / (float)(qimage.height() * qimage.width());
 
 //阀值为 0.99777 表示为全黑
 if(rate>0.60)
 {
   //qDebug()<<"qimage:故意遮挡摄像头";
 }
 qDebug()<<"qimage:比例:"<<rate;
 return 0;
}

补充知识:判断一批图片中含有某中颜色物体的图片个数占总图片的比例

最近在做一个语义分割项目,使用Label工具进行了类别的标注.然后不同类别生成了不同的颜色,如需要代码可以参考.后来我想统计一下含有一种类别的图片和含有两种类别的图片占总图片的比例,下面是我的代码:

代码思路:

1)循环读取文件夹中的图片

2)循环读取图片的每一个像素点,当图片的像素点和你检测的物体像素点一致时,对应类别加1.

3)读取完图片后计算每一类的比例.

import cv2
import os
import matplotlib.pyplot as plt
picture_path="/home/wsb/桌面/picture"
picture_list=os.listdir(picture_path)
total_picture=len(picture_list)
total=total_picture
per=[]
number=0#图片中道路类型为1的个数
number1=0#一种道路类型并且比例小于0.0638的个数
number2=0
for item in picture_list:
  src = os.path.join(os.path.abspath(picture_path), item)
  print("start: %s "%item)
  total_picture-=1
  mat=cv2.imread(src)
  height=mat.shape[0]
  width=mat.shape[1]
  ground=0
  zero=0  
  one=0
  two=0
  three=0
  four=0
  five=0
  six=0
  seven=0
  eight=0
  rateground=0
  rate0=0
  rate1=0
  rate2=0
  rate3=0
  rate4=0
  rate5=0
  rate6=0
  rate7=0
  rate8=0
  rate=0
  road_type=0
  for i in range(height):
    for j in range(width):
#      print("r:%s"%mat[i][j][0])
#      print("r:%s"%mat[i][j][1])
#      print("r:%s"%mat[i][j][2])

      '''
      我这里共有9种分类情况,况且我已知道每一种颜色的具体rgb值,我将它们作为我的判断条件
      如不你不知道可以在网上查找自己想查看比例的rgb值或者范围
      '''
      if mat[i][j][0]==0 and mat[i][j][1]==0 and mat[i][j][2]==0:
        ground+=1
      elif mat[i][j][0]==128 and mat[i][j][1]==0 and mat[i][j][2]==0:
        zero+=1
      elif mat[i][j][0]==0 and mat[i][j][1]==128 and mat[i][j][2]==0:
        one+=1
      elif mat[i][j][0]==128 and mat[i][j][1]==128 and mat[i][j][2]==0:
        two+=1
      elif mat[i][j][0]==0 and mat[i][j][1]==0 and mat[i][j][2]==128:
        three+=1
      elif mat[i][j][0]==128 and mat[i][j][1]==0 and mat[i][j][2]==128:
        four+=1
      elif mat[i][j][0]==0 and mat[i][j][1]==128 and mat[i][j][2]==128:
        five+=1
      elif mat[i][j][0]==128 and mat[i][j][1]==128 and mat[i][j][2]==128:
        six+=1
      elif mat[i][j][0]==0 and mat[i][j][1]==0 and mat[i][j][2]==64:
        seven+=1
      elif mat[i][j][0]==0 and mat[i][j][1]==0 and mat[i][j][2]==192:
        eight+=1
      else:
        print("输入正确的图片,或者更改上面判断条件的像素值")
  rateground=ground/(height*width)
  rate0=zero/(height*width)
  if rate0!=0:
    road_type+=1
  rate1=one/(height*width)
  if rate1!=0:
    road_type+=1
  rate2=two/(height*width)
  if rate2!=0:
    road_type+=1
  rate3=three/(height*width)
  if rate3!=0:
    road_type+=1
  rate4=four/(height*width)
  if rate4!=0:
    road_type+=1
  rate5=five/(height*width)
  if rate5!=0:
    road_type+=1
  rate6=six/(height*width)
  if rate6!=0:
    road_type+=1
  rate7=seven/(height*width)
  if rate7!=0:
    road_type+=1
  rate8=eight/(height*width)
  if rate8!=0:
    road_type+=1
  rate=rate0+rate1+rate2+rate3+rate4+rate5+rate6+rate7+rate8
  per.append(rate)
  if road_type==1:
    number+=1
    if rate<0.0638:
      number1+=1#一种类型道路并且所占比例小于0.0638的情况 
  else:
    if rate<0.532:
      number2+=1#两种道路类型,并且正确正确道路类型所占比例小于0.532时的个数
  print("the remaining %d"%total_picture)
A=number/total#图片中道路类型大于1种的概率
A1=number1/total#图片中一种道路类型并且比例小于0.0638的概率
A2=number2/total#图片中有两种道路,并且一种道路所占比例小于0.532时的概率
print("A1:%s"%A1)
print("the precentage of one road is %s"%A)
print("the precentage of two road is %s"%(1-A))
print("A2:%s"%A2)
plt.plot(per)
plt.ylabel('the percentage of road')
plt.show()

以上这篇Opencv图像处理:如何判断图片里某个颜色值占的比例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python实现基于HTTP文件传输实例
Nov 08 Python
python使用分治法实现求解最大值的方法
May 12 Python
Python和JavaScript间代码转换的4个工具
Feb 22 Python
在python win系统下 打开TXT文件的实例
Apr 29 Python
python微信公众号之关注公众号自动回复
Oct 25 Python
对Python3.x版本print函数左右对齐详解
Dec 22 Python
python requests 库请求带有文件参数的接口实例
Jan 03 Python
Python类中的魔法方法之 __slots__原理解析
Aug 26 Python
python实现超市商品销售管理系统
Oct 25 Python
Django 设置多环境配置文件载入问题
Feb 25 Python
浅谈python多线程和多线程变量共享问题介绍
Apr 17 Python
python+excel接口自动化获取token并作为请求参数进行传参操作
Nov 10 Python
QML用PathView实现轮播图
Jun 03 #Python
Python基于smtplib协议实现发送邮件
Jun 03 #Python
Pytorch环境搭建与基本语法
Jun 03 #Python
如何学习Python time模块
Jun 03 #Python
使用openCV去除文字中乱入的线条实例
Jun 02 #Python
Python能做什么
Jun 02 #Python
什么是Python中的匿名函数
Jun 02 #Python
You might like
浅谈PHP正则表达式中修饰符/i, /is, /s, /isU
2014/10/21 PHP
php使用curl下载指定大小的文件实例代码
2017/09/30 PHP
PHP聊天室简单实现方法详解
2018/12/08 PHP
laravel 执行迁移回滚示例
2019/10/23 PHP
jquery中的事件处理详细介绍
2013/06/24 Javascript
页面右下角弹出提示框示例代码js版
2013/08/02 Javascript
js获取电脑分辨率的思路及操作
2013/11/22 Javascript
Event altKey,ctrlKey,shiftKey属性解析
2013/12/18 Javascript
javascript中apply和call方法的作用及区别说明
2014/02/14 Javascript
jQuery判断当前点击的是第几个li的代码
2014/09/26 Javascript
理解javascript异步编程
2016/01/27 Javascript
动态创建按钮的JavaScript代码
2016/01/29 Javascript
jquery 全选、全不选、反选效果的实现代码【推荐】
2016/05/05 Javascript
Bootstrap fileinput文件上传预览插件使用详解
2017/05/16 Javascript
Node.js使用orm2进行update操作时关联字段无法修改的解决方法
2017/06/13 Javascript
JavaScript标准对象_动力节点Java学院整理
2017/06/27 Javascript
前端把html表格生成为excel表格的实例
2017/09/19 Javascript
使用vue-cli webpack 快速搭建项目的代码
2018/11/21 Javascript
详解Vue-axios 设置请求头问题
2018/12/06 Javascript
js实现适配移动端的拖动效果
2020/01/13 Javascript
微信jssdk踩坑之签名错误invalid signature
2020/05/19 Javascript
vue-quill-editor 自定义工具栏和自定义图片上传路径操作
2020/08/03 Javascript
原生JS实现弹幕效果的简单操作指南
2020/11/10 Javascript
selenium+python 去除启动的黑色cmd窗口方法
2018/05/22 Python
python读取Excel实例详解
2018/08/17 Python
2019 Python最新面试题及答案16道题
2019/04/11 Python
圣诞树世界:Christmas Tree World
2019/12/10 全球购物
应届毕业生如何写求职信
2014/02/16 职场文书
关于雷锋的演讲稿
2014/05/10 职场文书
质量标语大全
2014/06/12 职场文书
党员对照检查材料思想汇报
2014/09/16 职场文书
民政局标准版离婚协议书
2014/12/01 职场文书
申报优秀教师材料
2014/12/16 职场文书
兵马俑的导游词
2015/02/02 职场文书
质量保证书怎么写
2015/02/27 职场文书
《桂花雨》教学反思
2016/02/19 职场文书