Opencv图像处理:如何判断图片里某个颜色值占的比例


Posted in Python onJune 03, 2020

一、功能

这里的需求是,判断摄像头有没有被物体遮挡。这里只考虑用手遮挡---->判断黑色颜色的范围。

二、使用OpenCV的Mat格式图片遍历图片

下面代码里,传入的图片的尺寸是640*480,判断黑色范围。

/*
在图片里查找指定颜色的比例
*/
int Widget::Mat_color_Find(QImage qimage)
{
  Mat image = QImage2cvMat(qimage);//将图片加载进来
  int num = 0;//记录颜色的像素点
  float rate;//要计算的百分率
  //遍历图片的每一个像素点
  for(int i = 0; i < image.rows;i++) //行数
  {
   for(int j = 0; j <image.cols;j++) //列数
   {
    //对该像素是否为指定颜色进行判断 BGR 像素点
    //OpenCV 中 MAT类的默认三原色通道顺序BGR
    /*
   动态地址访问像素语法:image.at<Vec3b>(i,j)[0]、image.at<uchar>(i, j)
   访问三通道图像的单个像素:
   int b = image.at<Vec3b>(i, j)[0];
   int g = image.at<Vec3b>(i, j)[1];
   int r = image.at<Vec3b>(i, j)[2];
   对于三通道图像,每个像素存储了三个值,分别为蓝色、绿色、红色通道上的数值。
   int gray_data = image.at<uchar>(i, j);
   用来访问灰度图像的单个像素。对于灰度图像,每个像素只存储一个值
   */
    if((image.at<Vec3b>(i, j)[0] <= 120 &&
     image.at<Vec3b>(i, j)[1] <= 120 &&
     image.at<Vec3b>(i, j)[2] <= 120))
    {
     num++;
    }
   }
  }
  rate = (float)num / (float)(image.rows * image.cols);
 
  //阀值为 0.249255 表示为全黑
  if(rate>0.20)
  {
   qDebug()<<":Mat:故意遮挡摄像头";
  }
  qDebug()<<"Mat:比例"<<rate;
  return 0;
}
 
 
Mat Widget::QImage2cvMat(QImage image)
{
 Mat mat;
 switch(image.format())
 {
 case QImage::Format_ARGB32:
 case QImage::Format_RGB32:
 case QImage::Format_ARGB32_Premultiplied:
  mat = Mat(image.height(), image.width(), CV_8UC4, (void*)image.constBits(), image.bytesPerLine());
  break;
 case QImage::Format_RGB888:
  mat = Mat(image.height(), image.width(), CV_8UC3, (void*)image.constBits(), image.bytesPerLine());
  cvtColor(mat, mat, CV_BGR2RGB);
  break;
 case QImage::Format_Indexed8:
  mat = Mat(image.height(), image.width(), CV_8UC1, (void*)image.constBits(), image.bytesPerLine());
  break;
 }
 return mat;
}

三、使用QImage遍历像素点

/*
在图片里查找指定颜色的比例
*/
int Widget::qimage_color_Find(QImage qimage)
{
 int num = 0;//记录颜色的像素点
 float rate;//要计算的百分率
 quint8 r,g,b;
 //遍历图片的每一个像素点
 for(int i = 0; i < qimage.height();i++) //行数
 {
  for(int j = 0; j <qimage.width();j++) //列数
  {
   QRgb rgb=qimage.pixel(j,i);
   r=qRed(rgb);
   g=qGreen(rgb);
   b=qBlue(rgb);
 
   if((r <= 120 && g <= 120 && b <= 120))
   {
    num++;
   }
  }
 }
 rate = (float)num / (float)(qimage.height() * qimage.width());
 
 //阀值为 0.99777 表示为全黑
 if(rate>0.60)
 {
   //qDebug()<<"qimage:故意遮挡摄像头";
 }
 qDebug()<<"qimage:比例:"<<rate;
 return 0;
}

补充知识:判断一批图片中含有某中颜色物体的图片个数占总图片的比例

最近在做一个语义分割项目,使用Label工具进行了类别的标注.然后不同类别生成了不同的颜色,如需要代码可以参考.后来我想统计一下含有一种类别的图片和含有两种类别的图片占总图片的比例,下面是我的代码:

代码思路:

1)循环读取文件夹中的图片

2)循环读取图片的每一个像素点,当图片的像素点和你检测的物体像素点一致时,对应类别加1.

3)读取完图片后计算每一类的比例.

import cv2
import os
import matplotlib.pyplot as plt
picture_path="/home/wsb/桌面/picture"
picture_list=os.listdir(picture_path)
total_picture=len(picture_list)
total=total_picture
per=[]
number=0#图片中道路类型为1的个数
number1=0#一种道路类型并且比例小于0.0638的个数
number2=0
for item in picture_list:
  src = os.path.join(os.path.abspath(picture_path), item)
  print("start: %s "%item)
  total_picture-=1
  mat=cv2.imread(src)
  height=mat.shape[0]
  width=mat.shape[1]
  ground=0
  zero=0  
  one=0
  two=0
  three=0
  four=0
  five=0
  six=0
  seven=0
  eight=0
  rateground=0
  rate0=0
  rate1=0
  rate2=0
  rate3=0
  rate4=0
  rate5=0
  rate6=0
  rate7=0
  rate8=0
  rate=0
  road_type=0
  for i in range(height):
    for j in range(width):
#      print("r:%s"%mat[i][j][0])
#      print("r:%s"%mat[i][j][1])
#      print("r:%s"%mat[i][j][2])

      '''
      我这里共有9种分类情况,况且我已知道每一种颜色的具体rgb值,我将它们作为我的判断条件
      如不你不知道可以在网上查找自己想查看比例的rgb值或者范围
      '''
      if mat[i][j][0]==0 and mat[i][j][1]==0 and mat[i][j][2]==0:
        ground+=1
      elif mat[i][j][0]==128 and mat[i][j][1]==0 and mat[i][j][2]==0:
        zero+=1
      elif mat[i][j][0]==0 and mat[i][j][1]==128 and mat[i][j][2]==0:
        one+=1
      elif mat[i][j][0]==128 and mat[i][j][1]==128 and mat[i][j][2]==0:
        two+=1
      elif mat[i][j][0]==0 and mat[i][j][1]==0 and mat[i][j][2]==128:
        three+=1
      elif mat[i][j][0]==128 and mat[i][j][1]==0 and mat[i][j][2]==128:
        four+=1
      elif mat[i][j][0]==0 and mat[i][j][1]==128 and mat[i][j][2]==128:
        five+=1
      elif mat[i][j][0]==128 and mat[i][j][1]==128 and mat[i][j][2]==128:
        six+=1
      elif mat[i][j][0]==0 and mat[i][j][1]==0 and mat[i][j][2]==64:
        seven+=1
      elif mat[i][j][0]==0 and mat[i][j][1]==0 and mat[i][j][2]==192:
        eight+=1
      else:
        print("输入正确的图片,或者更改上面判断条件的像素值")
  rateground=ground/(height*width)
  rate0=zero/(height*width)
  if rate0!=0:
    road_type+=1
  rate1=one/(height*width)
  if rate1!=0:
    road_type+=1
  rate2=two/(height*width)
  if rate2!=0:
    road_type+=1
  rate3=three/(height*width)
  if rate3!=0:
    road_type+=1
  rate4=four/(height*width)
  if rate4!=0:
    road_type+=1
  rate5=five/(height*width)
  if rate5!=0:
    road_type+=1
  rate6=six/(height*width)
  if rate6!=0:
    road_type+=1
  rate7=seven/(height*width)
  if rate7!=0:
    road_type+=1
  rate8=eight/(height*width)
  if rate8!=0:
    road_type+=1
  rate=rate0+rate1+rate2+rate3+rate4+rate5+rate6+rate7+rate8
  per.append(rate)
  if road_type==1:
    number+=1
    if rate<0.0638:
      number1+=1#一种类型道路并且所占比例小于0.0638的情况 
  else:
    if rate<0.532:
      number2+=1#两种道路类型,并且正确正确道路类型所占比例小于0.532时的个数
  print("the remaining %d"%total_picture)
A=number/total#图片中道路类型大于1种的概率
A1=number1/total#图片中一种道路类型并且比例小于0.0638的概率
A2=number2/total#图片中有两种道路,并且一种道路所占比例小于0.532时的概率
print("A1:%s"%A1)
print("the precentage of one road is %s"%A)
print("the precentage of two road is %s"%(1-A))
print("A2:%s"%A2)
plt.plot(per)
plt.ylabel('the percentage of road')
plt.show()

以上这篇Opencv图像处理:如何判断图片里某个颜色值占的比例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
在Python程序中实现分布式进程的教程
Apr 28 Python
python中for语句简单遍历数据的方法
May 07 Python
Python的Django REST框架中的序列化及请求和返回
Apr 11 Python
浅谈python中requests模块导入的问题
May 18 Python
Tensorflow实现卷积神经网络的详细代码
May 24 Python
numpy返回array中元素的index方法
Jun 27 Python
使用Python Pandas处理亿级数据的方法
Jun 24 Python
Python selenium爬取微博数据代码实例
May 22 Python
python GUI模拟实现计算器
Jun 22 Python
深入了解Python enumerate和zip
Jul 16 Python
Python系统公网私网流量监控实现流程
Nov 23 Python
Python IO文件管理的具体使用
Mar 20 Python
QML用PathView实现轮播图
Jun 03 #Python
Python基于smtplib协议实现发送邮件
Jun 03 #Python
Pytorch环境搭建与基本语法
Jun 03 #Python
如何学习Python time模块
Jun 03 #Python
使用openCV去除文字中乱入的线条实例
Jun 02 #Python
Python能做什么
Jun 02 #Python
什么是Python中的匿名函数
Jun 02 #Python
You might like
php Memcache 中实现消息队列
2009/11/24 PHP
使用phpQuery采集网页的方法
2013/11/13 PHP
利用jQuery的$.event.fix函数统一浏览器event事件处理
2009/12/21 Javascript
jquery+ashx无刷新GridView数据显示插件(实现分页、排序、过滤功能)
2010/04/25 Javascript
js 复制或插入Html的实现方法小结
2010/05/19 Javascript
JavaScript函数定义的常见注意事项小结
2014/09/16 Javascript
js制作简易年历完整实例
2015/01/28 Javascript
D3.js实现雷达图的方法详解
2016/09/22 Javascript
javascript学习之json入门
2016/12/22 Javascript
详谈js对url进行编码和解码(三种方式的区别)
2017/08/16 Javascript
layui自定义插件citySelect实现省市区三级联动选择
2019/07/26 Javascript
LayUi数据表格自定义赋值方式
2019/10/26 Javascript
Node.js API详解之 dns模块用法实例分析
2020/05/15 Javascript
JavaScript实现拖拽和缩放效果
2020/08/24 Javascript
ES6 十大特性简介
2020/12/09 Javascript
如何在vue中使用video.js播放m3u8格式的视频
2021/02/01 Vue.js
[01:08:56]DOTA2-DPC中国联赛 正赛 Magma vs LBZS BO3 第一场 2月7日
2021/03/11 DOTA
Python随机生成彩票号码的方法
2015/03/05 Python
python检查字符串是否是正确ISBN的方法
2015/07/11 Python
virtualenv实现多个版本Python共存
2017/08/21 Python
python实现音乐下载的统计
2018/06/20 Python
在python中利用opencv简单做图片比对的方法
2019/01/24 Python
pygame实现俄罗斯方块游戏(AI篇2)
2019/10/29 Python
python str字符串转uuid实例
2020/03/03 Python
PyTorch 中的傅里叶卷积实现示例
2020/12/11 Python
详解CSS3中使用gradient实现渐变效果的方法
2015/08/18 HTML / CSS
HTML5+CSS设置浮动却没有动反而在中间且错行的问题
2020/05/26 HTML / CSS
HTML5适合的情人节礼物有纪念日期功能
2021/01/25 HTML / CSS
NUK奶瓶美国官网:NUK美国
2016/09/26 全球购物
Allsole美国/加拿大:英国一家专门出售品牌鞋子的网站
2018/10/21 全球购物
Ruby如何实现动态方法调用
2012/11/18 面试题
《第一次抱母亲》教学反思
2014/04/16 职场文书
文秘自荐信
2014/06/28 职场文书
《用字母表示数》教学反思
2016/02/17 职场文书
Pytorch 统计模型参数量的操作 param.numel()
2021/05/13 Python
vue项目配置sass及引入外部scss文件
2022/04/14 Vue.js