用Python实现BP神经网络(附代码)


Posted in Python onJuly 10, 2019

用Python实现出来的机器学习算法都是什么样子呢? 前两期线性回归及逻辑回归项目已发布(见文末链接),今天来讲讲BP神经网络。

BP神经网络

全部代码

https://github.com/lawlite19/MachineLearning_Python/blob/master/NeuralNetwok/NeuralNetwork.py

神经网络model

先介绍个三层的神经网络,如下图所示

输入层(input layer)有三个units(

用Python实现BP神经网络(附代码)

为补上的bias,通常设为1)

用Python实现BP神经网络(附代码)

表示第j层的第i个激励,也称为为单元unit

用Python实现BP神经网络(附代码)

为第j层到第j+1层映射的权重矩阵,就是每条边的权重

用Python实现BP神经网络(附代码)

所以可以得到:

隐含层:

用Python实现BP神经网络(附代码)

用Python实现BP神经网络(附代码)

用Python实现BP神经网络(附代码)

输出层

用Python实现BP神经网络(附代码)

其中,S型函数

用Python实现BP神经网络(附代码)

,也成为激励函数

可以看出

用Python实现BP神经网络(附代码)

为3x4的矩阵,

用Python实现BP神经网络(附代码)

为1x4的矩阵

用Python实现BP神经网络(附代码)

==》j+1的单元数x(j层的单元数+1)

代价函数

假设最后输出的

用Python实现BP神经网络(附代码)

,即代表输出层有K个单元

用Python实现BP神经网络(附代码)

其中,

用Python实现BP神经网络(附代码)

代表第i个单元输出与逻辑回归的代价函数

用Python实现BP神经网络(附代码)

差不多,就是累加上每个输出(共有K个输出)

正则化

L-->所有层的个数

用Python实现BP神经网络(附代码)

-->第l层unit的个数

正则化后的代价函数为

用Python实现BP神经网络(附代码)

用Python实现BP神经网络(附代码)

共有L-1层,然后是累加对应每一层的theta矩阵,注意不包含加上偏置项对应的theta(0)

正则化后的代价函数实现代码:

# 代价函数

def nnCostFunction(nn_params,input_layer_size,hidden_layer_size,num_labels,X,y,Lambda):

length = nn_params.shape[0] # theta的中长度

# 还原theta1和theta2

Theta1 = nn_params[0:hidden_layer_size*(input_layer_size+1)].reshape(hidden_layer_size,input_layer_size+1)

Theta2 = nn_params[hidden_layer_size*(input_layer_size+1):length].reshape(num_labels,hidden_layer_size+1)

# np.savetxt("Theta1.csv",Theta1,delimiter=',')

m = X.shape[0]

class_y = np.zeros((m,num_labels)) # 数据的y对应0-9,需要映射为0/1的关系

# 映射y

for i in range(num_labels):

class_y[:,i] = np.int32(y==i).reshape(1,-1) # 注意reshape(1,-1)才可以赋值

'''去掉theta1和theta2的第一列,因为正则化时从1开始'''

Theta1_colCount = Theta1.shape[1]

Theta1_x = Theta1[:,1:Theta1_colCount]

Theta2_colCount = Theta2.shape[1]

Theta2_x = Theta2[:,1:Theta2_colCount]

# 正则化向theta^2

term = np.dot(np.transpose(np.vstack((Theta1_x.reshape(-1,1),Theta2_x.reshape(-1,1)))),np.vstack((Theta1_x.reshape(-1,1),Theta2_x.reshape(-1,1))))

'''正向传播,每次需要补上一列1的偏置bias'''

a1 = np.hstack((np.ones((m,1)),X))

z2 = np.dot(a1,np.transpose(Theta1))

a2 = sigmoid(z2)

a2 = np.hstack((np.ones((m,1)),a2))

z3 = np.dot(a2,np.transpose(Theta2))

h = sigmoid(z3)

'''代价'''

J = -(np.dot(np.transpose(class_y.reshape(-1,1)),np.log(h.reshape(-1,1)))+np.dot(np.transpose(1-class_y.reshape(-1,1)),np.log(1-h.reshape(-1,1)))-Lambda*term/2)/m

return np.ravel(J)

反向传播BP

上面正向传播可以计算得到J(θ),使用梯度下降法还需要求它的梯度

BP反向传播的目的就是求代价函数的梯度

假设4层的神经网络,

用Python实现BP神经网络(附代码)

记为-->l层第j个单元的误差

用Python实现BP神经网络(附代码)

《===》

用Python实现BP神经网络(附代码)

(向量化)

用Python实现BP神经网络(附代码)

用Python实现BP神经网络(附代码)

没有

用Python实现BP神经网络(附代码)

,因为对于输入没有误差

因为S型函数

用Python实现BP神经网络(附代码)

的倒数为:

用Python实现BP神经网络(附代码)

所以上面的

用Python实现BP神经网络(附代码)

用Python实现BP神经网络(附代码)

可以在前向传播中计算出来

反向传播计算梯度的过程为:

用Python实现BP神经网络(附代码)

用Python实现BP神经网络(附代码)

是大写的

用Python实现BP神经网络(附代码)

for i=1-m:-

用Python实现BP神经网络(附代码)

-正向传播计算

用Python实现BP神经网络(附代码)

(l=2,3,4...L)

-反向计算

用Python实现BP神经网络(附代码)

用Python实现BP神经网络(附代码)

...

用Python实现BP神经网络(附代码)

-

用Python实现BP神经网络(附代码)

-

用Python实现BP神经网络(附代码)

用Python实现BP神经网络(附代码)

最后

用Python实现BP神经网络(附代码)

,即得到代价函数的梯度

实现代码:

# 梯度

def nnGradient(nn_params,input_layer_size,hidden_layer_size,num_labels,X,y,Lambda):

length = nn_params.shape[0]

Theta1 = nn_params[0:hidden_layer_size*(input_layer_size+1)].reshape(hidden_layer_size,input_layer_size+1)

Theta2 = nn_params[hidden_layer_size*(input_layer_size+1):length].reshape(num_labels,hidden_layer_size+1)

m = X.shape[0]

class_y = np.zeros((m,num_labels)) # 数据的y对应0-9,需要映射为0/1的关系

# 映射y

for i in range(num_labels):

class_y[:,i] = np.int32(y==i).reshape(1,-1) # 注意reshape(1,-1)才可以赋值

'''去掉theta1和theta2的第一列,因为正则化时从1开始'''

Theta1_colCount = Theta1.shape[1]

Theta1_x = Theta1[:,1:Theta1_colCount]

Theta2_colCount = Theta2.shape[1]

Theta2_x = Theta2[:,1:Theta2_colCount]

Theta1_grad = np.zeros((Theta1.shape)) #第一层到第二层的权重

Theta2_grad = np.zeros((Theta2.shape)) #第二层到第三层的权重

Theta1[:,0] = 0;

Theta2[:,0] = 0;

'''正向传播,每次需要补上一列1的偏置bias'''

a1 = np.hstack((np.ones((m,1)),X))

z2 = np.dot(a1,np.transpose(Theta1))

a2 = sigmoid(z2)

a2 = np.hstack((np.ones((m,1)),a2))

z3 = np.dot(a2,np.transpose(Theta2))

h = sigmoid(z3)

'''反向传播,delta为误差,'''

delta3 = np.zeros((m,num_labels))

delta2 = np.zeros((m,hidden_layer_size))

for i in range(m):

delta3[i,:] = h[i,:]-class_y[i,:]

Theta2_grad = Theta2_grad+np.dot(np.transpose(delta3[i,:].reshape(1,-1)),a2[i,:].reshape(1,-1))

delta2[i,:] = np.dot(delta3[i,:].reshape(1,-1),Theta2_x)*sigmoidGradient(z2[i,:])

Theta1_grad = Theta1_grad+np.dot(np.transpose(delta2[i,:].reshape(1,-1)),a1[i,:].reshape(1,-1))

'''梯度'''

grad = (np.vstack((Theta1_grad.reshape(-1,1),Theta2_grad.reshape(-1,1)))+Lambda*np.vstack((Theta1.reshape(-1,1),Theta2.reshape(-1,1))))/m

return np.ravel(grad)

BP可以求梯度的原因

实际是利用了链式求导法则

因为下一层的单元利用上一层的单元作为输入进行计算

大体的推导过程如下,最终我们是想预测函数与已知的y非常接近,求均方差的梯度沿着此梯度方向可使代价函数最小化。可对照上面求梯度的过程。

用Python实现BP神经网络(附代码)

求误差更详细的推导过程:

用Python实现BP神经网络(附代码)

梯度检查

检查利用BP求的梯度是否正确

利用导数的定义验证:

用Python实现BP神经网络(附代码)

求出来的数值梯度应该与BP求出的梯度非常接近

验证BP正确后就不需要再执行验证梯度的算法了

实现代码:

# 检验梯度是否计算正确

# 检验梯度是否计算正确

def checkGradient(Lambda = 0):

'''构造一个小型的神经网络验证,因为数值法计算梯度很浪费时间,而且验证正确后之后就不再需要验证了'''

input_layer_size = 3

hidden_layer_size = 5

num_labels = 3

m = 5

initial_Theta1 = debugInitializeWeights(input_layer_size,hidden_layer_size);

initial_Theta2 = debugInitializeWeights(hidden_layer_size,num_labels)

X = debugInitializeWeights(input_layer_size-1,m)

y = 1+np.transpose(np.mod(np.arange(1,m+1), num_labels))# 初始化y

y = y.reshape(-1,1)

nn_params = np.vstack((initial_Theta1.reshape(-1,1),initial_Theta2.reshape(-1,1))) #展开theta

'''BP求出梯度'''

grad = nnGradient(nn_params, input_layer_size, hidden_layer_size,

num_labels, X, y, Lambda)

'''使用数值法计算梯度'''

num_grad = np.zeros((nn_params.shape[0]))

step = np.zeros((nn_params.shape[0]))

e = 1e-4

for i in range(nn_params.shape[0]):

step[i] = e

loss1 = nnCostFunction(nn_params-step.reshape(-1,1), input_layer_size, hidden_layer_size,

num_labels, X, y,

Lambda)

loss2 = nnCostFunction(nn_params+step.reshape(-1,1), input_layer_size, hidden_layer_size,

num_labels, X, y,

Lambda)

num_grad[i] = (loss2-loss1)/(2*e)

step[i]=0

# 显示两列比较

res = np.hstack((num_grad.reshape(-1,1),grad.reshape(-1,1)))

print res

权重的随机初始化

神经网络不能像逻辑回归那样初始化theta为0,因为若是每条边的权重都为0,每个神经元都是相同的输出,在反向传播中也会得到同样的梯度,最终只会预测一种结果。

所以应该初始化为接近0的数

实现代码

# 随机初始化权重theta

def randInitializeWeights(L_in,L_out):

W = np.zeros((L_out,1+L_in)) # 对应theta的权重

epsilon_init = (6.0/(L_out+L_in))**0.5

W = np.random.rand(L_out,1+L_in)*2*epsilon_init-epsilon_init # np.random.rand(L_out,1+L_in)产生L_out*(1+L_in)大小的随机矩阵

return W

预测

正向传播预测结果

实现代码

# 预测

def predict(Theta1,Theta2,X):

m = X.shape[0]

num_labels = Theta2.shape[0]

#p = np.zeros((m,1))

'''正向传播,预测结果'''

X = np.hstack((np.ones((m,1)),X))

h1 = sigmoid(np.dot(X,np.transpose(Theta1)))

h1 = np.hstack((np.ones((m,1)),h1))

h2 = sigmoid(np.dot(h1,np.transpose(Theta2)))

'''

返回h中每一行最大值所在的列号

- np.max(h, axis=1)返回h中每一行的最大值(是某个数字的最大概率)

- 最后where找到的最大概率所在的列号(列号即是对应的数字)

'''

#np.savetxt("h2.csv",h2,delimiter=',')

p = np.array(np.where(h2[0,:] == np.max(h2, axis=1)[0]))

for i in np.arange(1, m):

t = np.array(np.where(h2[i,:] == np.max(h2, axis=1)[i]))

p = np.vstack((p,t))

return p

输出结果

梯度检查:

用Python实现BP神经网络(附代码)

随机显示100个手写数字

用Python实现BP神经网络(附代码)

显示theta1权重

用Python实现BP神经网络(附代码)

训练集预测准确度

用Python实现BP神经网络(附代码)

归一化后训练集预测准确度

用Python实现BP神经网络(附代码)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python处理json数据中的中文
Mar 06 Python
Python代码调试的几种方法总结
Apr 15 Python
关于python的list相关知识(推荐)
Aug 30 Python
Python中的groupby分组功能的实例代码
Jul 11 Python
python使用matplotlib库生成随机漫步图
Aug 27 Python
如何基于Python批量下载音乐
Nov 11 Python
python基于三阶贝塞尔曲线的数据平滑算法
Dec 27 Python
解决Python图形界面中设置尺寸的问题
Mar 05 Python
一篇文章搞懂python的转义字符及用法
Sep 03 Python
python爬取代理ip的示例
Dec 18 Python
python批量生成身份证号到Excel的两种方法实例
Jan 14 Python
解决pytorch 保存模型遇到的问题
Mar 03 Python
OpenCV 模板匹配
Jul 10 #Python
8种用Python实现线性回归的方法对比详解
Jul 10 #Python
Python实现计算对象的内存大小示例
Jul 10 #Python
Python画图高斯分布的示例
Jul 10 #Python
使用Python实现跳一跳自动跳跃功能
Jul 10 #Python
windows安装TensorFlow和Keras遇到的问题及其解决方法
Jul 10 #Python
使用python对多个txt文件中的数据进行筛选的方法
Jul 10 #Python
You might like
php中get_headers函数的作用及用法的详细介绍
2013/04/27 PHP
php写的AES加密解密类分享
2014/06/20 PHP
ecshop后台编辑器替换成ueditor编辑器
2015/03/03 PHP
php检测图片主要颜色的方法
2015/07/01 PHP
JS 强制设为首页的代码
2009/01/31 Javascript
Javascript 继承机制的实现
2009/08/12 Javascript
javascript完美拖拽的实现方法
2013/09/29 Javascript
jQuery插件制作之参数用法实例分析
2015/06/01 Javascript
用javascript实现自动输出网页文本
2015/07/30 Javascript
如何使用Bootstrap的modal组件自定义alert,confirm和modal对话框
2016/03/01 Javascript
js模糊查询实例分享
2016/12/26 Javascript
JS实现JSON.stringify的实例代码讲解
2017/02/07 Javascript
JavaScript面向对象精要(上部)
2017/09/12 Javascript
详解如何在Vue项目中导出Excel
2019/04/19 Javascript
[01:59][TI9趣味视频] 全明星赛奖励
2019/08/23 DOTA
python处理大数字的方法
2015/05/27 Python
Python编写登陆接口的方法
2017/07/10 Python
Linux下远程连接Jupyter+pyspark部署教程
2019/06/21 Python
Python实现的企业粉丝抽奖功能示例
2019/07/26 Python
Django框架HttpRequest对象用法实例分析
2019/11/01 Python
pycharm通过ssh连接远程服务器教程
2020/02/12 Python
python在一个范围内取随机数的简单实例
2020/08/16 Python
关于Kotlin中SAM转换的那些事
2020/09/15 Python
Kathmandu英国网站:新西兰户外运动品牌
2017/03/27 全球购物
销售总监工作职责
2013/11/21 职场文书
毕业生自荐信
2013/12/14 职场文书
幼儿园亲子活动总结
2014/04/26 职场文书
销售行政专员岗位职责
2014/06/10 职场文书
法学院毕业生求职信
2014/06/25 职场文书
2014年小学国庆节活动方案
2014/09/16 职场文书
医院办公室主任岗位职责
2015/04/01 职场文书
争做文明公民倡议书
2019/06/24 职场文书
MongoDB使用profile分析慢查询的步骤
2021/04/30 MongoDB
教你用Java Swing实现自助取款机系统
2021/06/11 Java/Android
Go语言基础map用法及示例详解
2021/11/17 Golang
Python FuzzyWuzzy实现模糊匹配
2022/04/28 Python