用Python实现BP神经网络(附代码)


Posted in Python onJuly 10, 2019

用Python实现出来的机器学习算法都是什么样子呢? 前两期线性回归及逻辑回归项目已发布(见文末链接),今天来讲讲BP神经网络。

BP神经网络

全部代码

https://github.com/lawlite19/MachineLearning_Python/blob/master/NeuralNetwok/NeuralNetwork.py

神经网络model

先介绍个三层的神经网络,如下图所示

输入层(input layer)有三个units(

用Python实现BP神经网络(附代码)

为补上的bias,通常设为1)

用Python实现BP神经网络(附代码)

表示第j层的第i个激励,也称为为单元unit

用Python实现BP神经网络(附代码)

为第j层到第j+1层映射的权重矩阵,就是每条边的权重

用Python实现BP神经网络(附代码)

所以可以得到:

隐含层:

用Python实现BP神经网络(附代码)

用Python实现BP神经网络(附代码)

用Python实现BP神经网络(附代码)

输出层

用Python实现BP神经网络(附代码)

其中,S型函数

用Python实现BP神经网络(附代码)

,也成为激励函数

可以看出

用Python实现BP神经网络(附代码)

为3x4的矩阵,

用Python实现BP神经网络(附代码)

为1x4的矩阵

用Python实现BP神经网络(附代码)

==》j+1的单元数x(j层的单元数+1)

代价函数

假设最后输出的

用Python实现BP神经网络(附代码)

,即代表输出层有K个单元

用Python实现BP神经网络(附代码)

其中,

用Python实现BP神经网络(附代码)

代表第i个单元输出与逻辑回归的代价函数

用Python实现BP神经网络(附代码)

差不多,就是累加上每个输出(共有K个输出)

正则化

L-->所有层的个数

用Python实现BP神经网络(附代码)

-->第l层unit的个数

正则化后的代价函数为

用Python实现BP神经网络(附代码)

用Python实现BP神经网络(附代码)

共有L-1层,然后是累加对应每一层的theta矩阵,注意不包含加上偏置项对应的theta(0)

正则化后的代价函数实现代码:

# 代价函数

def nnCostFunction(nn_params,input_layer_size,hidden_layer_size,num_labels,X,y,Lambda):

length = nn_params.shape[0] # theta的中长度

# 还原theta1和theta2

Theta1 = nn_params[0:hidden_layer_size*(input_layer_size+1)].reshape(hidden_layer_size,input_layer_size+1)

Theta2 = nn_params[hidden_layer_size*(input_layer_size+1):length].reshape(num_labels,hidden_layer_size+1)

# np.savetxt("Theta1.csv",Theta1,delimiter=',')

m = X.shape[0]

class_y = np.zeros((m,num_labels)) # 数据的y对应0-9,需要映射为0/1的关系

# 映射y

for i in range(num_labels):

class_y[:,i] = np.int32(y==i).reshape(1,-1) # 注意reshape(1,-1)才可以赋值

'''去掉theta1和theta2的第一列,因为正则化时从1开始'''

Theta1_colCount = Theta1.shape[1]

Theta1_x = Theta1[:,1:Theta1_colCount]

Theta2_colCount = Theta2.shape[1]

Theta2_x = Theta2[:,1:Theta2_colCount]

# 正则化向theta^2

term = np.dot(np.transpose(np.vstack((Theta1_x.reshape(-1,1),Theta2_x.reshape(-1,1)))),np.vstack((Theta1_x.reshape(-1,1),Theta2_x.reshape(-1,1))))

'''正向传播,每次需要补上一列1的偏置bias'''

a1 = np.hstack((np.ones((m,1)),X))

z2 = np.dot(a1,np.transpose(Theta1))

a2 = sigmoid(z2)

a2 = np.hstack((np.ones((m,1)),a2))

z3 = np.dot(a2,np.transpose(Theta2))

h = sigmoid(z3)

'''代价'''

J = -(np.dot(np.transpose(class_y.reshape(-1,1)),np.log(h.reshape(-1,1)))+np.dot(np.transpose(1-class_y.reshape(-1,1)),np.log(1-h.reshape(-1,1)))-Lambda*term/2)/m

return np.ravel(J)

反向传播BP

上面正向传播可以计算得到J(θ),使用梯度下降法还需要求它的梯度

BP反向传播的目的就是求代价函数的梯度

假设4层的神经网络,

用Python实现BP神经网络(附代码)

记为-->l层第j个单元的误差

用Python实现BP神经网络(附代码)

《===》

用Python实现BP神经网络(附代码)

(向量化)

用Python实现BP神经网络(附代码)

用Python实现BP神经网络(附代码)

没有

用Python实现BP神经网络(附代码)

,因为对于输入没有误差

因为S型函数

用Python实现BP神经网络(附代码)

的倒数为:

用Python实现BP神经网络(附代码)

所以上面的

用Python实现BP神经网络(附代码)

用Python实现BP神经网络(附代码)

可以在前向传播中计算出来

反向传播计算梯度的过程为:

用Python实现BP神经网络(附代码)

用Python实现BP神经网络(附代码)

是大写的

用Python实现BP神经网络(附代码)

for i=1-m:-

用Python实现BP神经网络(附代码)

-正向传播计算

用Python实现BP神经网络(附代码)

(l=2,3,4...L)

-反向计算

用Python实现BP神经网络(附代码)

用Python实现BP神经网络(附代码)

...

用Python实现BP神经网络(附代码)

-

用Python实现BP神经网络(附代码)

-

用Python实现BP神经网络(附代码)

用Python实现BP神经网络(附代码)

最后

用Python实现BP神经网络(附代码)

,即得到代价函数的梯度

实现代码:

# 梯度

def nnGradient(nn_params,input_layer_size,hidden_layer_size,num_labels,X,y,Lambda):

length = nn_params.shape[0]

Theta1 = nn_params[0:hidden_layer_size*(input_layer_size+1)].reshape(hidden_layer_size,input_layer_size+1)

Theta2 = nn_params[hidden_layer_size*(input_layer_size+1):length].reshape(num_labels,hidden_layer_size+1)

m = X.shape[0]

class_y = np.zeros((m,num_labels)) # 数据的y对应0-9,需要映射为0/1的关系

# 映射y

for i in range(num_labels):

class_y[:,i] = np.int32(y==i).reshape(1,-1) # 注意reshape(1,-1)才可以赋值

'''去掉theta1和theta2的第一列,因为正则化时从1开始'''

Theta1_colCount = Theta1.shape[1]

Theta1_x = Theta1[:,1:Theta1_colCount]

Theta2_colCount = Theta2.shape[1]

Theta2_x = Theta2[:,1:Theta2_colCount]

Theta1_grad = np.zeros((Theta1.shape)) #第一层到第二层的权重

Theta2_grad = np.zeros((Theta2.shape)) #第二层到第三层的权重

Theta1[:,0] = 0;

Theta2[:,0] = 0;

'''正向传播,每次需要补上一列1的偏置bias'''

a1 = np.hstack((np.ones((m,1)),X))

z2 = np.dot(a1,np.transpose(Theta1))

a2 = sigmoid(z2)

a2 = np.hstack((np.ones((m,1)),a2))

z3 = np.dot(a2,np.transpose(Theta2))

h = sigmoid(z3)

'''反向传播,delta为误差,'''

delta3 = np.zeros((m,num_labels))

delta2 = np.zeros((m,hidden_layer_size))

for i in range(m):

delta3[i,:] = h[i,:]-class_y[i,:]

Theta2_grad = Theta2_grad+np.dot(np.transpose(delta3[i,:].reshape(1,-1)),a2[i,:].reshape(1,-1))

delta2[i,:] = np.dot(delta3[i,:].reshape(1,-1),Theta2_x)*sigmoidGradient(z2[i,:])

Theta1_grad = Theta1_grad+np.dot(np.transpose(delta2[i,:].reshape(1,-1)),a1[i,:].reshape(1,-1))

'''梯度'''

grad = (np.vstack((Theta1_grad.reshape(-1,1),Theta2_grad.reshape(-1,1)))+Lambda*np.vstack((Theta1.reshape(-1,1),Theta2.reshape(-1,1))))/m

return np.ravel(grad)

BP可以求梯度的原因

实际是利用了链式求导法则

因为下一层的单元利用上一层的单元作为输入进行计算

大体的推导过程如下,最终我们是想预测函数与已知的y非常接近,求均方差的梯度沿着此梯度方向可使代价函数最小化。可对照上面求梯度的过程。

用Python实现BP神经网络(附代码)

求误差更详细的推导过程:

用Python实现BP神经网络(附代码)

梯度检查

检查利用BP求的梯度是否正确

利用导数的定义验证:

用Python实现BP神经网络(附代码)

求出来的数值梯度应该与BP求出的梯度非常接近

验证BP正确后就不需要再执行验证梯度的算法了

实现代码:

# 检验梯度是否计算正确

# 检验梯度是否计算正确

def checkGradient(Lambda = 0):

'''构造一个小型的神经网络验证,因为数值法计算梯度很浪费时间,而且验证正确后之后就不再需要验证了'''

input_layer_size = 3

hidden_layer_size = 5

num_labels = 3

m = 5

initial_Theta1 = debugInitializeWeights(input_layer_size,hidden_layer_size);

initial_Theta2 = debugInitializeWeights(hidden_layer_size,num_labels)

X = debugInitializeWeights(input_layer_size-1,m)

y = 1+np.transpose(np.mod(np.arange(1,m+1), num_labels))# 初始化y

y = y.reshape(-1,1)

nn_params = np.vstack((initial_Theta1.reshape(-1,1),initial_Theta2.reshape(-1,1))) #展开theta

'''BP求出梯度'''

grad = nnGradient(nn_params, input_layer_size, hidden_layer_size,

num_labels, X, y, Lambda)

'''使用数值法计算梯度'''

num_grad = np.zeros((nn_params.shape[0]))

step = np.zeros((nn_params.shape[0]))

e = 1e-4

for i in range(nn_params.shape[0]):

step[i] = e

loss1 = nnCostFunction(nn_params-step.reshape(-1,1), input_layer_size, hidden_layer_size,

num_labels, X, y,

Lambda)

loss2 = nnCostFunction(nn_params+step.reshape(-1,1), input_layer_size, hidden_layer_size,

num_labels, X, y,

Lambda)

num_grad[i] = (loss2-loss1)/(2*e)

step[i]=0

# 显示两列比较

res = np.hstack((num_grad.reshape(-1,1),grad.reshape(-1,1)))

print res

权重的随机初始化

神经网络不能像逻辑回归那样初始化theta为0,因为若是每条边的权重都为0,每个神经元都是相同的输出,在反向传播中也会得到同样的梯度,最终只会预测一种结果。

所以应该初始化为接近0的数

实现代码

# 随机初始化权重theta

def randInitializeWeights(L_in,L_out):

W = np.zeros((L_out,1+L_in)) # 对应theta的权重

epsilon_init = (6.0/(L_out+L_in))**0.5

W = np.random.rand(L_out,1+L_in)*2*epsilon_init-epsilon_init # np.random.rand(L_out,1+L_in)产生L_out*(1+L_in)大小的随机矩阵

return W

预测

正向传播预测结果

实现代码

# 预测

def predict(Theta1,Theta2,X):

m = X.shape[0]

num_labels = Theta2.shape[0]

#p = np.zeros((m,1))

'''正向传播,预测结果'''

X = np.hstack((np.ones((m,1)),X))

h1 = sigmoid(np.dot(X,np.transpose(Theta1)))

h1 = np.hstack((np.ones((m,1)),h1))

h2 = sigmoid(np.dot(h1,np.transpose(Theta2)))

'''

返回h中每一行最大值所在的列号

- np.max(h, axis=1)返回h中每一行的最大值(是某个数字的最大概率)

- 最后where找到的最大概率所在的列号(列号即是对应的数字)

'''

#np.savetxt("h2.csv",h2,delimiter=',')

p = np.array(np.where(h2[0,:] == np.max(h2, axis=1)[0]))

for i in np.arange(1, m):

t = np.array(np.where(h2[i,:] == np.max(h2, axis=1)[i]))

p = np.vstack((p,t))

return p

输出结果

梯度检查:

用Python实现BP神经网络(附代码)

随机显示100个手写数字

用Python实现BP神经网络(附代码)

显示theta1权重

用Python实现BP神经网络(附代码)

训练集预测准确度

用Python实现BP神经网络(附代码)

归一化后训练集预测准确度

用Python实现BP神经网络(附代码)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现爬虫下载漫画示例
Feb 16 Python
深入剖析Python的爬虫框架Scrapy的结构与运作流程
Jan 20 Python
python使用pymysql实现操作mysql
Sep 13 Python
Python中如何优雅的合并两个字典(dict)方法示例
Aug 09 Python
Python中使用Counter进行字典创建以及key数量统计的方法
Jul 06 Python
python 获取毫秒数,计算调用时长的方法
Feb 20 Python
Python assert语句的简单使用示例
Jul 28 Python
python next()和iter()函数原理解析
Feb 07 Python
python爬虫开发之使用Python爬虫库requests多线程抓取猫眼电影TOP100实例
Mar 10 Python
python GUI模拟实现计算器
Jun 22 Python
Python实战之疫苗研发情况可视化
May 18 Python
深入解析NumPy中的Broadcasting广播机制
May 30 Python
OpenCV 模板匹配
Jul 10 #Python
8种用Python实现线性回归的方法对比详解
Jul 10 #Python
Python实现计算对象的内存大小示例
Jul 10 #Python
Python画图高斯分布的示例
Jul 10 #Python
使用Python实现跳一跳自动跳跃功能
Jul 10 #Python
windows安装TensorFlow和Keras遇到的问题及其解决方法
Jul 10 #Python
使用python对多个txt文件中的数据进行筛选的方法
Jul 10 #Python
You might like
simplehtmldom Doc api帮助文档
2012/03/26 PHP
PHP7.0安装笔记整理
2015/08/28 PHP
zend framework重定向方法小结
2016/05/28 PHP
php for 循环使用的简单实例
2016/06/02 PHP
PHP 微信扫码支付源代码(推荐)
2016/11/03 PHP
js类 from qq
2006/11/13 Javascript
js 遍历json返回的map内容示例代码
2013/10/29 Javascript
jquery操作checkbox实现全选和取消全选
2014/05/02 Javascript
JavaScript轻松创建级联函数的方法示例
2017/02/10 Javascript
详解vscode中vue代码颜色插件
2018/10/11 Javascript
8个有意思的JavaScript面试题
2019/07/30 Javascript
AI小程序之语音听写来了,十分钟掌握百度大脑语音听写全攻略
2020/03/13 Javascript
JavaScript中Object、map、weakmap的区别分析
2020/12/15 Javascript
[01:09]2014DOTA2国际邀请赛 TI4西雅图DOTA2 中国美女coser加油助威
2014/07/20 DOTA
[42:36]DOTA2上海特级锦标赛B组败者赛 VG VS Spirit第二局
2016/02/26 DOTA
python简单程序读取串口信息的方法
2015/03/13 Python
windows下python安装paramiko模块和pycrypto模块(简单三步)
2017/07/06 Python
Python基于贪心算法解决背包问题示例
2017/11/27 Python
Python学习之Django的管理界面代码示例
2018/02/10 Python
python 获取毫秒数,计算调用时长的方法
2019/02/20 Python
Python判断对象是否相等及eq函数的讲解
2019/02/25 Python
python 自定义装饰器实例详解
2019/07/20 Python
Django app配置多个数据库代码实例
2019/12/17 Python
Python3直接爬取图片URL并保存示例
2019/12/18 Python
python适合做数据挖掘吗
2020/06/16 Python
基于keras中的回调函数用法说明
2020/06/17 Python
GUESS西班牙官方网上商城:美国服饰品牌
2017/03/15 全球购物
荷兰在线体育用品商店:Avantisport.nl
2018/07/04 全球购物
大学生毕业求职简历的自我评价
2013/10/24 职场文书
公司前台接待岗位职责
2013/12/03 职场文书
韩国商务邀请函
2014/01/14 职场文书
工作分析计划书
2014/04/30 职场文书
父母教会我观后感
2015/06/17 职场文书
女性励志书籍推荐
2019/08/19 职场文书
基于angular实现树形二级表格
2021/10/16 Javascript
浅谈JavaScript浅拷贝和深拷贝
2021/11/07 Javascript