用Python实现BP神经网络(附代码)


Posted in Python onJuly 10, 2019

用Python实现出来的机器学习算法都是什么样子呢? 前两期线性回归及逻辑回归项目已发布(见文末链接),今天来讲讲BP神经网络。

BP神经网络

全部代码

https://github.com/lawlite19/MachineLearning_Python/blob/master/NeuralNetwok/NeuralNetwork.py

神经网络model

先介绍个三层的神经网络,如下图所示

输入层(input layer)有三个units(

用Python实现BP神经网络(附代码)

为补上的bias,通常设为1)

用Python实现BP神经网络(附代码)

表示第j层的第i个激励,也称为为单元unit

用Python实现BP神经网络(附代码)

为第j层到第j+1层映射的权重矩阵,就是每条边的权重

用Python实现BP神经网络(附代码)

所以可以得到:

隐含层:

用Python实现BP神经网络(附代码)

用Python实现BP神经网络(附代码)

用Python实现BP神经网络(附代码)

输出层

用Python实现BP神经网络(附代码)

其中,S型函数

用Python实现BP神经网络(附代码)

,也成为激励函数

可以看出

用Python实现BP神经网络(附代码)

为3x4的矩阵,

用Python实现BP神经网络(附代码)

为1x4的矩阵

用Python实现BP神经网络(附代码)

==》j+1的单元数x(j层的单元数+1)

代价函数

假设最后输出的

用Python实现BP神经网络(附代码)

,即代表输出层有K个单元

用Python实现BP神经网络(附代码)

其中,

用Python实现BP神经网络(附代码)

代表第i个单元输出与逻辑回归的代价函数

用Python实现BP神经网络(附代码)

差不多,就是累加上每个输出(共有K个输出)

正则化

L-->所有层的个数

用Python实现BP神经网络(附代码)

-->第l层unit的个数

正则化后的代价函数为

用Python实现BP神经网络(附代码)

用Python实现BP神经网络(附代码)

共有L-1层,然后是累加对应每一层的theta矩阵,注意不包含加上偏置项对应的theta(0)

正则化后的代价函数实现代码:

# 代价函数

def nnCostFunction(nn_params,input_layer_size,hidden_layer_size,num_labels,X,y,Lambda):

length = nn_params.shape[0] # theta的中长度

# 还原theta1和theta2

Theta1 = nn_params[0:hidden_layer_size*(input_layer_size+1)].reshape(hidden_layer_size,input_layer_size+1)

Theta2 = nn_params[hidden_layer_size*(input_layer_size+1):length].reshape(num_labels,hidden_layer_size+1)

# np.savetxt("Theta1.csv",Theta1,delimiter=',')

m = X.shape[0]

class_y = np.zeros((m,num_labels)) # 数据的y对应0-9,需要映射为0/1的关系

# 映射y

for i in range(num_labels):

class_y[:,i] = np.int32(y==i).reshape(1,-1) # 注意reshape(1,-1)才可以赋值

'''去掉theta1和theta2的第一列,因为正则化时从1开始'''

Theta1_colCount = Theta1.shape[1]

Theta1_x = Theta1[:,1:Theta1_colCount]

Theta2_colCount = Theta2.shape[1]

Theta2_x = Theta2[:,1:Theta2_colCount]

# 正则化向theta^2

term = np.dot(np.transpose(np.vstack((Theta1_x.reshape(-1,1),Theta2_x.reshape(-1,1)))),np.vstack((Theta1_x.reshape(-1,1),Theta2_x.reshape(-1,1))))

'''正向传播,每次需要补上一列1的偏置bias'''

a1 = np.hstack((np.ones((m,1)),X))

z2 = np.dot(a1,np.transpose(Theta1))

a2 = sigmoid(z2)

a2 = np.hstack((np.ones((m,1)),a2))

z3 = np.dot(a2,np.transpose(Theta2))

h = sigmoid(z3)

'''代价'''

J = -(np.dot(np.transpose(class_y.reshape(-1,1)),np.log(h.reshape(-1,1)))+np.dot(np.transpose(1-class_y.reshape(-1,1)),np.log(1-h.reshape(-1,1)))-Lambda*term/2)/m

return np.ravel(J)

反向传播BP

上面正向传播可以计算得到J(θ),使用梯度下降法还需要求它的梯度

BP反向传播的目的就是求代价函数的梯度

假设4层的神经网络,

用Python实现BP神经网络(附代码)

记为-->l层第j个单元的误差

用Python实现BP神经网络(附代码)

《===》

用Python实现BP神经网络(附代码)

(向量化)

用Python实现BP神经网络(附代码)

用Python实现BP神经网络(附代码)

没有

用Python实现BP神经网络(附代码)

,因为对于输入没有误差

因为S型函数

用Python实现BP神经网络(附代码)

的倒数为:

用Python实现BP神经网络(附代码)

所以上面的

用Python实现BP神经网络(附代码)

用Python实现BP神经网络(附代码)

可以在前向传播中计算出来

反向传播计算梯度的过程为:

用Python实现BP神经网络(附代码)

用Python实现BP神经网络(附代码)

是大写的

用Python实现BP神经网络(附代码)

for i=1-m:-

用Python实现BP神经网络(附代码)

-正向传播计算

用Python实现BP神经网络(附代码)

(l=2,3,4...L)

-反向计算

用Python实现BP神经网络(附代码)

用Python实现BP神经网络(附代码)

...

用Python实现BP神经网络(附代码)

-

用Python实现BP神经网络(附代码)

-

用Python实现BP神经网络(附代码)

用Python实现BP神经网络(附代码)

最后

用Python实现BP神经网络(附代码)

,即得到代价函数的梯度

实现代码:

# 梯度

def nnGradient(nn_params,input_layer_size,hidden_layer_size,num_labels,X,y,Lambda):

length = nn_params.shape[0]

Theta1 = nn_params[0:hidden_layer_size*(input_layer_size+1)].reshape(hidden_layer_size,input_layer_size+1)

Theta2 = nn_params[hidden_layer_size*(input_layer_size+1):length].reshape(num_labels,hidden_layer_size+1)

m = X.shape[0]

class_y = np.zeros((m,num_labels)) # 数据的y对应0-9,需要映射为0/1的关系

# 映射y

for i in range(num_labels):

class_y[:,i] = np.int32(y==i).reshape(1,-1) # 注意reshape(1,-1)才可以赋值

'''去掉theta1和theta2的第一列,因为正则化时从1开始'''

Theta1_colCount = Theta1.shape[1]

Theta1_x = Theta1[:,1:Theta1_colCount]

Theta2_colCount = Theta2.shape[1]

Theta2_x = Theta2[:,1:Theta2_colCount]

Theta1_grad = np.zeros((Theta1.shape)) #第一层到第二层的权重

Theta2_grad = np.zeros((Theta2.shape)) #第二层到第三层的权重

Theta1[:,0] = 0;

Theta2[:,0] = 0;

'''正向传播,每次需要补上一列1的偏置bias'''

a1 = np.hstack((np.ones((m,1)),X))

z2 = np.dot(a1,np.transpose(Theta1))

a2 = sigmoid(z2)

a2 = np.hstack((np.ones((m,1)),a2))

z3 = np.dot(a2,np.transpose(Theta2))

h = sigmoid(z3)

'''反向传播,delta为误差,'''

delta3 = np.zeros((m,num_labels))

delta2 = np.zeros((m,hidden_layer_size))

for i in range(m):

delta3[i,:] = h[i,:]-class_y[i,:]

Theta2_grad = Theta2_grad+np.dot(np.transpose(delta3[i,:].reshape(1,-1)),a2[i,:].reshape(1,-1))

delta2[i,:] = np.dot(delta3[i,:].reshape(1,-1),Theta2_x)*sigmoidGradient(z2[i,:])

Theta1_grad = Theta1_grad+np.dot(np.transpose(delta2[i,:].reshape(1,-1)),a1[i,:].reshape(1,-1))

'''梯度'''

grad = (np.vstack((Theta1_grad.reshape(-1,1),Theta2_grad.reshape(-1,1)))+Lambda*np.vstack((Theta1.reshape(-1,1),Theta2.reshape(-1,1))))/m

return np.ravel(grad)

BP可以求梯度的原因

实际是利用了链式求导法则

因为下一层的单元利用上一层的单元作为输入进行计算

大体的推导过程如下,最终我们是想预测函数与已知的y非常接近,求均方差的梯度沿着此梯度方向可使代价函数最小化。可对照上面求梯度的过程。

用Python实现BP神经网络(附代码)

求误差更详细的推导过程:

用Python实现BP神经网络(附代码)

梯度检查

检查利用BP求的梯度是否正确

利用导数的定义验证:

用Python实现BP神经网络(附代码)

求出来的数值梯度应该与BP求出的梯度非常接近

验证BP正确后就不需要再执行验证梯度的算法了

实现代码:

# 检验梯度是否计算正确

# 检验梯度是否计算正确

def checkGradient(Lambda = 0):

'''构造一个小型的神经网络验证,因为数值法计算梯度很浪费时间,而且验证正确后之后就不再需要验证了'''

input_layer_size = 3

hidden_layer_size = 5

num_labels = 3

m = 5

initial_Theta1 = debugInitializeWeights(input_layer_size,hidden_layer_size);

initial_Theta2 = debugInitializeWeights(hidden_layer_size,num_labels)

X = debugInitializeWeights(input_layer_size-1,m)

y = 1+np.transpose(np.mod(np.arange(1,m+1), num_labels))# 初始化y

y = y.reshape(-1,1)

nn_params = np.vstack((initial_Theta1.reshape(-1,1),initial_Theta2.reshape(-1,1))) #展开theta

'''BP求出梯度'''

grad = nnGradient(nn_params, input_layer_size, hidden_layer_size,

num_labels, X, y, Lambda)

'''使用数值法计算梯度'''

num_grad = np.zeros((nn_params.shape[0]))

step = np.zeros((nn_params.shape[0]))

e = 1e-4

for i in range(nn_params.shape[0]):

step[i] = e

loss1 = nnCostFunction(nn_params-step.reshape(-1,1), input_layer_size, hidden_layer_size,

num_labels, X, y,

Lambda)

loss2 = nnCostFunction(nn_params+step.reshape(-1,1), input_layer_size, hidden_layer_size,

num_labels, X, y,

Lambda)

num_grad[i] = (loss2-loss1)/(2*e)

step[i]=0

# 显示两列比较

res = np.hstack((num_grad.reshape(-1,1),grad.reshape(-1,1)))

print res

权重的随机初始化

神经网络不能像逻辑回归那样初始化theta为0,因为若是每条边的权重都为0,每个神经元都是相同的输出,在反向传播中也会得到同样的梯度,最终只会预测一种结果。

所以应该初始化为接近0的数

实现代码

# 随机初始化权重theta

def randInitializeWeights(L_in,L_out):

W = np.zeros((L_out,1+L_in)) # 对应theta的权重

epsilon_init = (6.0/(L_out+L_in))**0.5

W = np.random.rand(L_out,1+L_in)*2*epsilon_init-epsilon_init # np.random.rand(L_out,1+L_in)产生L_out*(1+L_in)大小的随机矩阵

return W

预测

正向传播预测结果

实现代码

# 预测

def predict(Theta1,Theta2,X):

m = X.shape[0]

num_labels = Theta2.shape[0]

#p = np.zeros((m,1))

'''正向传播,预测结果'''

X = np.hstack((np.ones((m,1)),X))

h1 = sigmoid(np.dot(X,np.transpose(Theta1)))

h1 = np.hstack((np.ones((m,1)),h1))

h2 = sigmoid(np.dot(h1,np.transpose(Theta2)))

'''

返回h中每一行最大值所在的列号

- np.max(h, axis=1)返回h中每一行的最大值(是某个数字的最大概率)

- 最后where找到的最大概率所在的列号(列号即是对应的数字)

'''

#np.savetxt("h2.csv",h2,delimiter=',')

p = np.array(np.where(h2[0,:] == np.max(h2, axis=1)[0]))

for i in np.arange(1, m):

t = np.array(np.where(h2[i,:] == np.max(h2, axis=1)[i]))

p = np.vstack((p,t))

return p

输出结果

梯度检查:

用Python实现BP神经网络(附代码)

随机显示100个手写数字

用Python实现BP神经网络(附代码)

显示theta1权重

用Python实现BP神经网络(附代码)

训练集预测准确度

用Python实现BP神经网络(附代码)

归一化后训练集预测准确度

用Python实现BP神经网络(附代码)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
详解Python list 与 NumPy.ndarry 切片之间的对比
Jul 24 Python
Python工程师面试必备25条知识点
Jan 17 Python
python实现二叉查找树实例代码
Feb 08 Python
pandas多级分组实现排序的方法
Apr 20 Python
Django 路由系统URLconf的使用
Oct 11 Python
python按时间排序目录下的文件实现方法
Oct 17 Python
pycharm全局搜索的具体步骤
Jul 28 Python
python使用建议技巧分享(三)
Aug 18 Python
Python 开发工具通过 agent 代理使用的方法
Sep 27 Python
Python headers请求头如何实现快速添加
Nov 03 Python
基于Python实现将列表数据生成折线图
Mar 23 Python
利用Python实时获取steam特惠游戏数据
Jun 25 Python
OpenCV 模板匹配
Jul 10 #Python
8种用Python实现线性回归的方法对比详解
Jul 10 #Python
Python实现计算对象的内存大小示例
Jul 10 #Python
Python画图高斯分布的示例
Jul 10 #Python
使用Python实现跳一跳自动跳跃功能
Jul 10 #Python
windows安装TensorFlow和Keras遇到的问题及其解决方法
Jul 10 #Python
使用python对多个txt文件中的数据进行筛选的方法
Jul 10 #Python
You might like
请php正则走开
2008/03/15 PHP
PHP学习之数组值的操作
2011/04/17 PHP
PHP删除指定目录中的所有目录及文件的方法
2015/02/26 PHP
PHP实现的随机IP函数【国内IP段】
2016/07/20 PHP
PHP Mysqli 常用代码集合
2016/11/12 PHP
Joomla框架实现字符串截取的方法示例
2017/07/18 PHP
php实现等比例压缩图片
2018/07/26 PHP
laravel5.6中的外键约束示例
2019/10/23 PHP
jValidate 基于jQuery的表单验证插件
2009/12/12 Javascript
JavaScript 实现类的多种方法实例
2013/05/01 Javascript
jQuery文件上传插件Uploadify使用指南
2014/06/05 Javascript
jQuery通过点击行来删除HTML表格行的实现示例
2014/09/10 Javascript
浅析Bootstrip的select控件绑定数据的问题
2016/05/10 Javascript
JavaScript学习笔记整理_简单实现枚举类型,扑克牌应用
2016/09/19 Javascript
AngularJS入门教程之多视图切换用法示例
2016/11/02 Javascript
JS如何生成一个不重复的ID的函数
2016/12/25 Javascript
js鼠标经过tab选项卡时实现切换延迟
2017/03/24 Javascript
Bootstrap下拉菜单更改为悬停(hover)触发的方法
2017/05/24 Javascript
浅谈JavaScript中的属性:如何遍历属性
2017/09/14 Javascript
详解如何在React组件“外”使用父组件的Props
2018/01/12 Javascript
nodejs取得当前执行路径的方法
2018/05/13 NodeJs
element-ui表格数据转换的示例代码
2018/08/24 Javascript
Vue-Cli项目优化操作的实现
2019/10/27 Javascript
Webpack中SplitChunksPlugin 配置参数详解
2020/03/24 Javascript
python中文分词教程之前向最大正向匹配算法详解
2017/11/02 Python
Python使用pickle模块储存对象操作示例
2018/08/15 Python
对Python 窗体(tkinter)文本编辑器(Text)详解
2018/10/11 Python
Python3中lambda表达式与函数式编程讲解
2019/01/14 Python
python读取ini配置的类封装代码实例
2020/01/08 Python
python源文件的字符编码知识点详解
2021/03/04 Python
纯css3制作煽动翅膀的蝴蝶的示例
2018/04/23 HTML / CSS
html5 worker 实例(一) 为什么测试不到效果
2013/06/24 HTML / CSS
Chupi官网:在爱尔兰手工制作的订婚、结婚戒指和精美珠宝
2020/09/28 全球购物
给老婆大人的检讨书
2014/02/24 职场文书
居委会个人对照检查材料思想汇报
2014/09/29 职场文书
JavaScript嵌入百度地图API的最详细方法
2021/04/16 Javascript