8种用Python实现线性回归的方法对比详解


Posted in Python onJuly 10, 2019

前言

说到如何用Python执行线性回归,大部分人会立刻想到用sklearn的linear_model,但事实是,Python至少有8种执行线性回归的方法,sklearn并不是最高效的。

今天,让我们来谈谈线性回归。没错,作为数据科学界元老级的模型,线性回归几乎是所有数据科学家的入门必修课。抛开涉及大量数统的模型分析和检验不说,你真的就能熟练应用线性回归了么?未必!

在这篇文章中,文摘菌将介绍8种用Python实现线性回归的方法。了解了这8种方法,就能够根据不同需求,灵活选取最为高效的方法实现线性回归。

“宝刀不老”的线性回归

时至今日,深度学习早已成为数据科学的新宠。即便往前推10年,SVM、boosting等算法也能在准确率上完爆线性回归。

为什么我们还需要线性回归呢?

一方面,线性回归所能够模拟的关系其实远不止线性关系。线性回归中的“线性”指的是系数的线性,而通过对特征的非线性变换,以及广义线性模型的推广,输出和特征之间的函数关系可以是高度非线性的。另一方面,也是更为重要的一点,线性模型的易解释性使得它在物理学、经济学、商学等领域中占据了难以取代的地位。

那么,如何用Python来实现线性回归呢?

由于机器学习库scikit-learn的广泛流行,常用的方法是从该库中调用linear_model来拟合数据。虽然这可以提供机器学习的其他流水线特征(例如:数据归一化,模型系数正则化,将线性模型传递到另一个下游模型)的其他优点,但是当一个数据分析师需要快速而简便地确定回归系数(和一些基本相关统计量)时,这通常不是最快速简便的方法。

下面,我将介绍一些更快更简洁的方法,但是它们所提供信息量和建模的灵活性不尽相同。

各种线性回归方法的完整源码都可以在文末的GitHub链接中找到。他们大多数都依赖于SciPy包。

SciPy是基于Python的Numpy扩展构建的数学算法和函数的集合。通过为用户提供便于操作和可视化数据的高级命令和类,为交互式Python会话增加了强大的功能。

8种方法实现线性回归

方法一:Scipy.polyfit( ) or numpy.polyfit( )

8种用Python实现线性回归的方法对比详解

这是一个最基本的最小二乘多项式拟合函数(least squares polynomial fit function),接受数据集和任何维度的多项式函数(由用户指定),并返回一组使平方误差最小的系数。这里给出函数的详细描述。对于简单的线性回归来说,可以选择1维函数。但是如果你想拟合更高维的模型,则可以从线性特征数据中构建多项式特征并拟合模型。

方法二:Stats.linregress( )

8种用Python实现线性回归的方法对比详解

这是一个高度专业化的线性回归函数,可以在SciPy的统计模块中找到。然而因为它仅被用来优化计算两组测量数据的最小二乘回归,所以其灵活性相当受限。因此,不能使用它进行广义线性模型和多元回归拟合。但是,由于其特殊性,它是简单线性回归中最快速的方法之一。除了拟合的系数和截距项之外,它还返回基本统计量,如R2系数和标准差。

方法三:Optimize.curve_fit( )

8种用Python实现线性回归的方法对比详解

这与Polyfit方法是一致的,但本质上更具一般性。这个强大的函数来自scipy.optimize模块,可以通过最小二乘最小化将任意的用户自定义函数拟合到数据集上。

对于简单的线性回归来说,可以只写一个线性的mx + c函数并调用这个估计函数。不言而喻,它也适用于多元回归,并返回最小二乘度量最小的函数参数数组以及协方差矩阵。

方法四:numpy.linalg.lstsq

8种用Python实现线性回归的方法对比详解

这是通过矩阵分解计算线性方程组的最小二乘解的基本方法。来自numpy包的简便线性代数模块。在该方法中,通过计算欧几里德2-范数||b-ax||2最小化的向量x来求解等式ax = b。

该方程可能有无数解、唯一解或无解。如果a是方阵且满秩,则x(四舍五入)是方程的“精确”解。

你可以使用这个方法做一元或多元线性回归来得到计算的系数和残差。一个小诀窍是,在调用函数之前必须在x数据后加一列1来计算截距项。这被证明是更快速地解决线性回归问题的方法之一。

方法五:Statsmodels.OLS ( )

Statsmodels是一个小型的Python包,它为许多不同的统计模型估计提供了类和函数,还提供了用于统计测试和统计数据探索的类和函数。每个估计对应一个泛结果列表。可根据现有的统计包进行测试,从而确保统计结果的正确性。

对于线性回归,可以使用该包中的OLS或一般最小二乘函数来获得估计过程中的完整的统计信息。

一个需要牢记的小技巧是,必须手动给数据x添加一个常数来计算截距,否则默认情况下只会得到系数。以下是OLS模型的完整汇总结果的截图。结果中与R或Julia等统计语言一样具有丰富的内容。

8种用Python实现线性回归的方法对比详解

方法六和七:使用矩阵的逆求解析解

对于条件良好的线性回归问题(其中,至少满足数据点个数>特征数量),系数求解等价于存在一个简单的闭式矩阵解,使得最小二乘最小化。由下式给出:

8种用Python实现线性回归的方法对比详解

这里有两个选择:

(a)使用简单的乘法求矩阵的逆

(b)首先计算x的Moore-Penrose广义伪逆矩阵,然后与y取点积。由于第二个过程涉及奇异值分解(SVD),所以它比较慢,但是它可以很好地适用于没有良好条件的数据集。

方法八:sklearn.linear_model.LinearRegression( )

这是大多数机器学习工程师和数据科学家使用的典型方法。当然,对于现实世界中的问题,它可能被交叉验证和正则化的算法如Lasso回归和Ridge回归所取代,而不被过多使用,但是这些高级函数的核心正是这个模型本身。

八种方法效率比拼

作为一名数据科学家,应该一直寻找准确且快速的方法或函数来完成数据建模工作。如果模型本来就很慢,那么会对大数据集造成执行瓶颈。

一个可以用来确定可扩展性的好办法是不断增加数据集的大小,执行模型并取所有的运行时间绘制成趋势图。

下面是源代码及其运行结果

(https://github.com/tirthajyoti/PythonMachineLearning/blob/master/Linear_Regression_Methods.ipynb)。

由于其简单,即使多达1000万个数据点,stats.linregress和简单的矩阵求逆还是最快速的方法。

8种用Python实现线性回归的方法,究竟哪个方法最高效?

简单矩阵逆求解的方案更快

作为数据科学家,我们必须一直探索多种解决方案来对相同的任务进行分析和建模,并为特定问题选择最佳方案。

在本文中,我们讨论了8种简单线性回归的方法。大多数都可以扩展到更一般化的多元和多项式回归建模中。

本文的目标主要是讨论这些方法的相对运行速度和计算复杂度。我们在一个数据量持续增加的合成数据集(最多达1000万个样本)上进行测试,并给出每种方法的运算时间。

令人惊讶的是,与广泛被使用的scikit-learnlinear_model相比,简单矩阵的逆求解的方案反而更加快速。

我们还收集了项目代码,大家可以到这里下载代码并直接运行文中提到的8种方法喔:

https://github.com/tirthajyoti/PythonMachineLearning/blob/master/Linear_Regression_Methods.ipynb

英文原文地址:https://medium.freecodecamp.org/data-science-with-python-8-ways-to-do-linear-regression-and-measure-their-speed-b5577d75f8b

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python在linux中输出带颜色的文字的方法
Jun 19 Python
Python解析网页源代码中的115网盘链接实例
Sep 30 Python
Python多进程分块读取超大文件的方法
Apr 13 Python
Python实现快速排序算法及去重的快速排序的简单示例
Jun 26 Python
Python多维/嵌套字典数据无限遍历的实现
Nov 04 Python
Flask核心机制之上下文源码剖析
Dec 25 Python
浅谈PyTorch的可重复性问题(如何使实验结果可复现)
Feb 20 Python
可视化pytorch 模型中不同BN层的running mean曲线实例
Jun 24 Python
Python使用requests模块爬取百度翻译
Aug 25 Python
python合并多个excel文件的示例
Sep 23 Python
Django+Django-Celery+Celery的整合实战
Jan 20 Python
conda安装tensorflow和conda常用命令小结
Feb 20 Python
Python实现计算对象的内存大小示例
Jul 10 #Python
Python画图高斯分布的示例
Jul 10 #Python
使用Python实现跳一跳自动跳跃功能
Jul 10 #Python
windows安装TensorFlow和Keras遇到的问题及其解决方法
Jul 10 #Python
使用python对多个txt文件中的数据进行筛选的方法
Jul 10 #Python
Python 占位符的使用方法详解
Jul 10 #Python
Python寻找路径和查找文件路径的示例
Jul 10 #Python
You might like
Search File Contents PHP 搜索目录文本内容的代码
2010/02/21 PHP
php新建文件自动编号的思路与实现
2011/06/27 PHP
解析PHP计算页面执行时间的实现代码
2013/06/18 PHP
实例讲解通过​PHP创建数据库
2019/01/20 PHP
PHP中md5()函数的用法讲解
2019/03/30 PHP
php curl发送请求实例方法
2019/08/01 PHP
jquery 选择器部分整理
2009/10/28 Javascript
jquery点击页面任何区域实现鼠标焦点十字效果
2013/06/21 Javascript
javascript浏览器窗口之间传递数据的方法
2015/01/20 Javascript
完美兼容多浏览器的js判断图片路径代码汇总
2015/04/17 Javascript
jQuery实现定时读取分析xml文件的方法
2015/07/16 Javascript
JS实现仿雅虎首页快捷登录入口及导航模块效果
2015/09/19 Javascript
设计模式中的组合模式在JavaScript程序构建中的使用
2016/05/18 Javascript
JS实现的自定义显示加载等待图片插件(loading.gif)
2016/06/17 Javascript
使用Electron构建React+Webpack桌面应用的方法
2017/12/15 Javascript
Vue使用.sync 实现父子组件的双向绑定数据问题
2019/04/04 Javascript
Python语言检测模块langid和langdetect的使用实例
2019/02/19 Python
HTML5 Canvas API中drawImage()方法的使用实例
2016/03/25 HTML / CSS
html5的自定义data-*属性与jquery的data()方法的使用
2014/07/02 HTML / CSS
阿联酋航空官方网站:Emirates
2017/10/17 全球购物
开学季活动策划方案
2014/02/28 职场文书
中等生评语大全
2014/05/04 职场文书
2014年药店店长工作总结
2014/11/17 职场文书
学习型家庭事迹材料
2014/12/20 职场文书
工作表扬信范文
2015/01/17 职场文书
质量保证书格式
2015/02/27 职场文书
小学教育见习总结
2015/06/23 职场文书
助学金申请书该怎么写?
2019/07/16 职场文书
python基于tkinter制作无损音乐下载工具
2021/03/29 Python
tensorflow+k-means聚类简单实现猫狗图像分类的方法
2021/04/28 Python
python随机打印成绩排名表
2021/06/23 Python
详解解Django 多对多表关系的三种创建方式
2021/08/23 Python
CSS精灵图的原理与使用方法介绍
2022/03/17 HTML / CSS
MySQL读取JSON转换的方式
2022/03/18 MySQL
vue中控制mock在开发环境使用,在生产环境禁用方式
2022/04/06 Vue.js
Win11查看设备管理器
2022/04/19 数码科技