Python中的支持向量机SVM的使用(附实例代码)


Posted in Python onJune 26, 2019

除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类。因为Python中的sklearn库也集成了SVM算法,本文的运行环境是Pycharm。

一、导入sklearn算法包

Scikit-Learn库已经实现了所有基本机器学习的算法,具体使用详见官方文档说明:http://scikit-learn.org/stable/auto_examples/index.html。

skleran中集成了许多算法,其导入包的方式如下所示,

逻辑回归:from sklearn.linear_model import LogisticRegression

朴素贝叶斯:from sklearn.naive_bayes import GaussianNB

K-近邻:from sklearn.neighbors import KNeighborsClassifier

决策树:from sklearn.tree import DecisionTreeClassifier

支持向量机:from sklearn import svm

二、sklearn中svc的使用

(1)使用numpy中的loadtxt读入数据文件

loadtxt()的使用方法:

Python中的支持向量机SVM的使用(附实例代码)

fname:文件路径。eg:C:/Dataset/iris.txt。

dtype:数据类型。eg:float、str等。

delimiter:分隔符。eg:‘,'。

converters:将数据列与转换函数进行映射的字典。eg:{1:fun},含义是将第2列对应转换函数进行转换。

usecols:选取数据的列。

以Iris兰花数据集为例子:

由于从UCI数据库中下载的Iris原始数据集的样子是这样的,前四列为特征列,第五列为类别列,分别有三种类别Iris-setosa, Iris-versicolor, Iris-virginica。

 

Python中的支持向量机SVM的使用(附实例代码)

当使用numpy中的loadtxt函数导入该数据集时,假设数据类型dtype为浮点型,但是很明显第五列的数据类型并不是浮点型。

因此我们要额外做一个工作,即通过loadtxt()函数中的converters参数将第五列通过转换函数映射成浮点类型的数据。

首先,我们要写出一个转换函数:

def iris_type(s):
  it = {'Iris-setosa': 0, 'Iris-versicolor': 1, 'Iris-virginica': 2}
  return it[s]

接下来读入数据,converters={4: iris_type}中“4”指的是第5列:

path = u'D:/f盘/python/学习/iris.data' # 数据文件路径
data = np.loadtxt(path, dtype=float, delimiter=',', converters={4: iris_type})

读入结果:

Python中的支持向量机SVM的使用(附实例代码)

(2)将Iris分为训练集与测试集

x, y = np.split(data, (4,), axis=1)
x = x[:, :2]
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1, train_size=0.6)

1.split(数据,分割位置,轴=1(水平分割) or 0(垂直分割))。

2.x = x[:, :2]是为方便后期画图更直观,故只取了前两列特征值向量训练。

3. sklearn.model_selection.train_test_split随机划分训练集与测试集。train_test_split(train_data,train_target,test_size=数字, random_state=0)

参数解释:

  • train_data:所要划分的样本特征集
  • train_target:所要划分的样本结果
  • test_size:样本占比,如果是整数的话就是样本的数量
  • random_state:是随机数的种子。

随机数种子:其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。比如你每次都填1,其他参数一样的情况下你得到的随机数组是一样的。但填0或不填,每次都会不一样。随机数的产生取决于种子,随机数和种子之间的关系遵从以下两个规则:种子不同,产生不同的随机数;种子相同,即使实例不同也产生相同的随机数。

(3)训练svm分类器

# clf = svm.SVC(C=0.1, kernel='linear', decision_function_shape='ovr')
  clf = svm.SVC(C=0.8, kernel='rbf', gamma=20, decision_function_shape='ovr')
  clf.fit(x_train, y_train.ravel())

kernel='linear'时,为线性核,C越大分类效果越好,但有可能会过拟合(defaul C=1)。

kernel='rbf'时(default),为高斯核,gamma值越小,分类界面越连续;gamma值越大,分类界面越“散”,分类效果越好,但有可能会过拟合。

decision_function_shape='ovr'时,为one v rest,即一个类别与其他类别进行划分,

decision_function_shape='ovo'时,为one v one,即将类别两两之间进行划分,用二分类的方法模拟多分类的结果。

(4)计算svc分类器的准确率

print clf.score(x_train, y_train) # 精度
y_hat = clf.predict(x_train)
show_accuracy(y_hat, y_train, '训练集')
print clf.score(x_test, y_test)
y_hat = clf.predict(x_test)
show_accuracy(y_hat, y_test, '测试集')

结果为:

Python中的支持向量机SVM的使用(附实例代码)

如果想查看决策函数,可以通过decision_function()实现

print 'decision_function:\n', clf.decision_function(x_train)
print '\npredict:\n', clf.predict(x_train)

结果为:

Python中的支持向量机SVM的使用(附实例代码)Python中的支持向量机SVM的使用(附实例代码)

decision_function中每一列的值代表距离各类别的距离。

(5)绘制图像

1.确定坐标轴范围,x,y轴分别表示两个特征

x1_min, x1_max = x[:, 0].min(), x[:, 0].max() # 第0列的范围
x2_min, x2_max = x[:, 1].min(), x[:, 1].max() # 第1列的范围
x1, x2 = np.mgrid[x1_min:x1_max:200j, x2_min:x2_max:200j] # 生成网格采样点
grid_test = np.stack((x1.flat, x2.flat), axis=1) # 测试点
# print 'grid_test = \n', grid_testgrid_hat = clf.predict(grid_test)    # 预测分类值grid_hat = grid_hat.reshape(x1.shape) # 使之与输入的形状相同

这里用到了mgrid()函数,该函数的作用这里简单介绍一下:

 假设假设目标函数F(x,y)=x+y。x轴范围1~3,y轴范围4~6,当绘制图像时主要分四步进行:

【step1:x扩展】(朝右扩展):

        [1 1 1]

[2 2 2]

[3 3 3]

【step2:y扩展】(朝下扩展):

[4 5 6]

[4 5 6]

[4 5 6]

【step3:定位(xi,yi)】:

[(1,4) (1,5) (1,6)]

[(2,4) (2,5) (2,6)]

[(3,4) (3,5) (3,6)]

【step4:将(xi,yi)代入F(x,y)=x+y】

因此这里x1, x2 = np.mgrid[x1_min:x1_max:200j, x2_min:x2_max:200j]后的结果为:

Python中的支持向量机SVM的使用(附实例代码)

再通过stack()函数,axis=1,生成测试点

Python中的支持向量机SVM的使用(附实例代码)

2.指定默认字体

mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False

3.绘制

cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])

cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])

plt.pcolormesh(x1, x2, grid_hat, cmap=cm_light)

plt.scatter(x[:, 0], x[:, 1], c=y, edgecolors='k', s=50, cmap=cm_dark) # 样本

plt.scatter(x_test[:, 0], x_test[:, 1], s=120, facecolors='none', zorder=10) # 圈中测试集样本

plt.xlabel(u'花萼长度', fontsize=13)

plt.ylabel(u'花萼宽度', fontsize=13)

plt.xlim(x1_min, x1_max)

plt.ylim(x2_min, x2_max)

plt.title(u'鸢尾花SVM二特征分类', fontsize=15)

# plt.grid()

plt.show()

pcolormesh(x,y,z,cmap)这里参数代入x1,x2,grid_hat,cmap=cm_light绘制的是背景。

 scatter中edgecolors是指描绘点的边缘色彩,s指描绘点的大小,cmap指点的颜色。

xlim指图的边界。

最终结果为:

Python中的支持向量机SVM的使用(附实例代码)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Mac OS X10.9安装的Python2.7升级Python3.3步骤详解
Dec 04 Python
Pyhthon中使用compileall模块编译源文件为pyc文件
Apr 28 Python
Python实现高斯函数的三维显示方法
Dec 29 Python
如何在django里上传csv文件并进行入库处理的方法
Jan 02 Python
Python3批量移动指定文件到指定文件夹方法示例
Sep 02 Python
Pandas实现dataframe和np.array的相互转换
Nov 30 Python
详解django中Template语言
Feb 22 Python
浅谈在django中使用redirect重定向数据传输的问题
Mar 13 Python
python在一个范围内取随机数的简单实例
Aug 16 Python
Python将list元素转存为CSV文件的实现
Nov 16 Python
最新pycharm安装教程
Nov 18 Python
Python机器学习之底层实现KNN
Jun 20 Python
对python 中class与变量的使用方法详解
Jun 26 #Python
python 机器学习之支持向量机非线性回归SVR模型
Jun 26 #Python
python机器学习库scikit-learn:SVR的基本应用
Jun 26 #Python
Python Numpy 实现交换两行和两列的方法
Jun 26 #Python
python 字典操作提取key,value的方法
Jun 26 #Python
通过PYTHON来实现图像分割详解
Jun 26 #Python
Flask模板引擎之Jinja2语法介绍
Jun 26 #Python
You might like
php Mysql日期和时间函数集合
2007/11/16 PHP
php5 non-thread-safe和thread-safe这两个版本的区别分析
2010/03/13 PHP
PHP实现下载功能的代码
2012/09/29 PHP
php+mysql删除指定编号员工信息的方法
2015/01/14 PHP
PHP7新特性之抽象语法树(AST)带来的变化详解
2018/07/17 PHP
JQuery实现绚丽的横向下拉菜单
2013/12/19 Javascript
基于jQuery实现下拉框
2014/11/24 Javascript
JavaScript中几种排序算法的简单实现
2015/07/29 Javascript
纯js实现手风琴效果
2020/04/17 Javascript
javascript 的变量、作用域和内存问题
2017/04/19 Javascript
react router 4.0以上的路由应用详解
2017/09/21 Javascript
JavaScript中Object基础内部方法图
2018/02/05 Javascript
浅谈vue后台管理系统权限控制思考与实践
2018/12/19 Javascript
vue防止花括号{{}}闪烁v-text和v-html、v-cloak用法示例
2019/03/13 Javascript
开源一个微信小程序仪表盘组件过程解析
2019/07/30 Javascript
python3爬取各类天气信息
2018/02/24 Python
python3实现字符串操作的实例代码
2019/04/16 Python
Python中常用的8种字符串操作方法
2019/05/06 Python
pyinstaller还原python代码过程图解
2020/01/08 Python
面向新手解析python Beautiful Soup基本用法
2020/07/11 Python
Python如何批量生成和调用变量
2020/11/21 Python
Python抖音快手代码舞(字符舞)的实现方法
2021/02/07 Python
HTML5新增加标签和功能概述
2016/09/05 HTML / CSS
设计师珠宝:Ylang 23
2018/05/11 全球购物
iKRIX意大利网上商店:男女豪华服装和配件
2019/10/09 全球购物
公积金单位接收函
2014/01/11 职场文书
生日主持词
2014/03/20 职场文书
小学运动会口号
2014/06/07 职场文书
公共机构节能宣传周活动总结
2014/07/09 职场文书
国际商务专业求职信
2014/07/15 职场文书
祖国在我心中演讲稿600字
2014/09/23 职场文书
欢迎新生标语
2014/10/06 职场文书
公务员廉洁从政心得体会
2016/01/19 职场文书
vue+spring boot实现校验码功能
2021/05/27 Vue.js
SQL使用复合索引实现数据库查询的优化
2022/05/25 SQL Server
win11怎么消除图标小盾牌?win11消除图标小盾牌解决方法
2022/08/05 数码科技