Python中的支持向量机SVM的使用(附实例代码)


Posted in Python onJune 26, 2019

除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类。因为Python中的sklearn库也集成了SVM算法,本文的运行环境是Pycharm。

一、导入sklearn算法包

Scikit-Learn库已经实现了所有基本机器学习的算法,具体使用详见官方文档说明:http://scikit-learn.org/stable/auto_examples/index.html。

skleran中集成了许多算法,其导入包的方式如下所示,

逻辑回归:from sklearn.linear_model import LogisticRegression

朴素贝叶斯:from sklearn.naive_bayes import GaussianNB

K-近邻:from sklearn.neighbors import KNeighborsClassifier

决策树:from sklearn.tree import DecisionTreeClassifier

支持向量机:from sklearn import svm

二、sklearn中svc的使用

(1)使用numpy中的loadtxt读入数据文件

loadtxt()的使用方法:

Python中的支持向量机SVM的使用(附实例代码)

fname:文件路径。eg:C:/Dataset/iris.txt。

dtype:数据类型。eg:float、str等。

delimiter:分隔符。eg:‘,'。

converters:将数据列与转换函数进行映射的字典。eg:{1:fun},含义是将第2列对应转换函数进行转换。

usecols:选取数据的列。

以Iris兰花数据集为例子:

由于从UCI数据库中下载的Iris原始数据集的样子是这样的,前四列为特征列,第五列为类别列,分别有三种类别Iris-setosa, Iris-versicolor, Iris-virginica。

 

Python中的支持向量机SVM的使用(附实例代码)

当使用numpy中的loadtxt函数导入该数据集时,假设数据类型dtype为浮点型,但是很明显第五列的数据类型并不是浮点型。

因此我们要额外做一个工作,即通过loadtxt()函数中的converters参数将第五列通过转换函数映射成浮点类型的数据。

首先,我们要写出一个转换函数:

def iris_type(s):
  it = {'Iris-setosa': 0, 'Iris-versicolor': 1, 'Iris-virginica': 2}
  return it[s]

接下来读入数据,converters={4: iris_type}中“4”指的是第5列:

path = u'D:/f盘/python/学习/iris.data' # 数据文件路径
data = np.loadtxt(path, dtype=float, delimiter=',', converters={4: iris_type})

读入结果:

Python中的支持向量机SVM的使用(附实例代码)

(2)将Iris分为训练集与测试集

x, y = np.split(data, (4,), axis=1)
x = x[:, :2]
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1, train_size=0.6)

1.split(数据,分割位置,轴=1(水平分割) or 0(垂直分割))。

2.x = x[:, :2]是为方便后期画图更直观,故只取了前两列特征值向量训练。

3. sklearn.model_selection.train_test_split随机划分训练集与测试集。train_test_split(train_data,train_target,test_size=数字, random_state=0)

参数解释:

  • train_data:所要划分的样本特征集
  • train_target:所要划分的样本结果
  • test_size:样本占比,如果是整数的话就是样本的数量
  • random_state:是随机数的种子。

随机数种子:其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。比如你每次都填1,其他参数一样的情况下你得到的随机数组是一样的。但填0或不填,每次都会不一样。随机数的产生取决于种子,随机数和种子之间的关系遵从以下两个规则:种子不同,产生不同的随机数;种子相同,即使实例不同也产生相同的随机数。

(3)训练svm分类器

# clf = svm.SVC(C=0.1, kernel='linear', decision_function_shape='ovr')
  clf = svm.SVC(C=0.8, kernel='rbf', gamma=20, decision_function_shape='ovr')
  clf.fit(x_train, y_train.ravel())

kernel='linear'时,为线性核,C越大分类效果越好,但有可能会过拟合(defaul C=1)。

kernel='rbf'时(default),为高斯核,gamma值越小,分类界面越连续;gamma值越大,分类界面越“散”,分类效果越好,但有可能会过拟合。

decision_function_shape='ovr'时,为one v rest,即一个类别与其他类别进行划分,

decision_function_shape='ovo'时,为one v one,即将类别两两之间进行划分,用二分类的方法模拟多分类的结果。

(4)计算svc分类器的准确率

print clf.score(x_train, y_train) # 精度
y_hat = clf.predict(x_train)
show_accuracy(y_hat, y_train, '训练集')
print clf.score(x_test, y_test)
y_hat = clf.predict(x_test)
show_accuracy(y_hat, y_test, '测试集')

结果为:

Python中的支持向量机SVM的使用(附实例代码)

如果想查看决策函数,可以通过decision_function()实现

print 'decision_function:\n', clf.decision_function(x_train)
print '\npredict:\n', clf.predict(x_train)

结果为:

Python中的支持向量机SVM的使用(附实例代码)Python中的支持向量机SVM的使用(附实例代码)

decision_function中每一列的值代表距离各类别的距离。

(5)绘制图像

1.确定坐标轴范围,x,y轴分别表示两个特征

x1_min, x1_max = x[:, 0].min(), x[:, 0].max() # 第0列的范围
x2_min, x2_max = x[:, 1].min(), x[:, 1].max() # 第1列的范围
x1, x2 = np.mgrid[x1_min:x1_max:200j, x2_min:x2_max:200j] # 生成网格采样点
grid_test = np.stack((x1.flat, x2.flat), axis=1) # 测试点
# print 'grid_test = \n', grid_testgrid_hat = clf.predict(grid_test)    # 预测分类值grid_hat = grid_hat.reshape(x1.shape) # 使之与输入的形状相同

这里用到了mgrid()函数,该函数的作用这里简单介绍一下:

 假设假设目标函数F(x,y)=x+y。x轴范围1~3,y轴范围4~6,当绘制图像时主要分四步进行:

【step1:x扩展】(朝右扩展):

        [1 1 1]

[2 2 2]

[3 3 3]

【step2:y扩展】(朝下扩展):

[4 5 6]

[4 5 6]

[4 5 6]

【step3:定位(xi,yi)】:

[(1,4) (1,5) (1,6)]

[(2,4) (2,5) (2,6)]

[(3,4) (3,5) (3,6)]

【step4:将(xi,yi)代入F(x,y)=x+y】

因此这里x1, x2 = np.mgrid[x1_min:x1_max:200j, x2_min:x2_max:200j]后的结果为:

Python中的支持向量机SVM的使用(附实例代码)

再通过stack()函数,axis=1,生成测试点

Python中的支持向量机SVM的使用(附实例代码)

2.指定默认字体

mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False

3.绘制

cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])

cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])

plt.pcolormesh(x1, x2, grid_hat, cmap=cm_light)

plt.scatter(x[:, 0], x[:, 1], c=y, edgecolors='k', s=50, cmap=cm_dark) # 样本

plt.scatter(x_test[:, 0], x_test[:, 1], s=120, facecolors='none', zorder=10) # 圈中测试集样本

plt.xlabel(u'花萼长度', fontsize=13)

plt.ylabel(u'花萼宽度', fontsize=13)

plt.xlim(x1_min, x1_max)

plt.ylim(x2_min, x2_max)

plt.title(u'鸢尾花SVM二特征分类', fontsize=15)

# plt.grid()

plt.show()

pcolormesh(x,y,z,cmap)这里参数代入x1,x2,grid_hat,cmap=cm_light绘制的是背景。

 scatter中edgecolors是指描绘点的边缘色彩,s指描绘点的大小,cmap指点的颜色。

xlim指图的边界。

最终结果为:

Python中的支持向量机SVM的使用(附实例代码)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python实现批量把SVG格式转成png、pdf格式的代码分享
Aug 21 Python
Python中MySQL数据迁移到MongoDB脚本的方法
Apr 28 Python
python实现拓扑排序的基本教程
Mar 11 Python
基于python批量处理dat文件及科学计算方法详解
May 08 Python
基于windows下pip安装python模块时报错总结
Jun 12 Python
python 3.7.0 安装配置方法图文教程
Aug 27 Python
python3 unicode列表转换为中文的实例
Oct 26 Python
Python使用os.listdir()和os.walk()获取文件路径与文件下所有目录的方法
Apr 01 Python
wxPython之wx.DC绘制形状
Nov 19 Python
Django实现whoosh搜索引擎使用jieba分词
Apr 08 Python
Keras在训练期间可视化训练误差和测试误差实例
Jun 16 Python
Python软件包安装的三种常见方法
Jul 07 Python
对python 中class与变量的使用方法详解
Jun 26 #Python
python 机器学习之支持向量机非线性回归SVR模型
Jun 26 #Python
python机器学习库scikit-learn:SVR的基本应用
Jun 26 #Python
Python Numpy 实现交换两行和两列的方法
Jun 26 #Python
python 字典操作提取key,value的方法
Jun 26 #Python
通过PYTHON来实现图像分割详解
Jun 26 #Python
Flask模板引擎之Jinja2语法介绍
Jun 26 #Python
You might like
PHP数组交集的优化代码分析
2011/03/06 PHP
php实现12306余票查询、价格查询示例
2014/04/17 PHP
如何使用PHP给图片加水印
2016/10/12 PHP
nodejs 后缀名判断限制代码
2011/03/31 NodeJs
可在线编辑网页文字效果代码(单击)
2013/03/02 Javascript
浅析JavaScript中的隐式类型转换
2013/12/05 Javascript
jquery设置text的值示例(设置文本框 DIV 表单值)
2014/01/06 Javascript
NodeJS学习笔记之(Url,QueryString,Path)模块
2015/01/13 NodeJs
vue使用axios时关于this的指向问题详解
2017/12/22 Javascript
vue中各选项及钩子函数执行顺序详解
2018/08/25 Javascript
nodejs搭建本地服务器并访问文件操作示例
2019/05/11 NodeJs
JavaScript 截取字符串代码实例
2019/09/05 Javascript
浅谈JavaScript中的“!!”作用
2020/08/03 Javascript
[02:41]DOTA2英雄基础教程 谜团
2013/12/10 DOTA
Python读写Json涉及到中文的处理方法
2016/09/12 Python
Python绑定方法与非绑定方法详解
2017/08/18 Python
Python之ReportLab绘制条形码和二维码的实例
2018/01/15 Python
numpy.random.seed()的使用实例解析
2018/02/03 Python
30秒轻松实现TensorFlow物体检测
2018/03/14 Python
Python socket实现简单聊天室
2018/04/01 Python
python实现连续变量最优分箱详解--CART算法
2019/11/22 Python
Python:type、object、class与内置类型实例
2019/12/25 Python
详解HTML5中rel属性的prefetch预加载功能使用
2016/05/06 HTML / CSS
欧舒丹英国官网:购买欧舒丹护手霜等明星产品
2017/01/17 全球购物
LN-CC英国:伦敦时尚生活的缩影
2019/09/01 全球购物
机关财务管理制度
2014/01/17 职场文书
劳动之星获奖感言
2014/02/01 职场文书
《放小鸟》教学反思
2014/04/20 职场文书
党员干部廉洁承诺书
2014/05/28 职场文书
小学安全教育月活动总结
2014/07/07 职场文书
2014年政协工作总结
2014/12/09 职场文书
行政上诉状范文
2015/05/23 职场文书
安全主题班会教案
2015/08/12 职场文书
八年级英语教学反思
2016/02/15 职场文书
关于SpringBoot 使用 Redis 分布式锁解决并发问题
2021/11/17 Redis
win10识别不了U盘怎么办 win10系统读取U盘失败的解决办法
2022/08/05 数码科技