python 机器学习之支持向量机非线性回归SVR模型


Posted in Python onJune 26, 2019

本文介绍了python 支持向量机非线性回归SVR模型,废话不多说,具体如下:

import numpy as np
import matplotlib.pyplot as plt

from sklearn import datasets, linear_model,svm
from sklearn.model_selection import train_test_split

def load_data_regression():
  '''
  加载用于回归问题的数据集
  '''
  diabetes = datasets.load_diabetes() #使用 scikit-learn 自带的一个糖尿病病人的数据集
  # 拆分成训练集和测试集,测试集大小为原始数据集大小的 1/4
  return train_test_split(diabetes.data,diabetes.target,test_size=0.25,random_state=0)

#支持向量机非线性回归SVR模型
def test_SVR_linear(*data):
  X_train,X_test,y_train,y_test=data
  regr=svm.SVR(kernel='linear')
  regr.fit(X_train,y_train)
  print('Coefficients:%s, intercept %s'%(regr.coef_,regr.intercept_))
  print('Score: %.2f' % regr.score(X_test, y_test))
  
# 生成用于回归问题的数据集
X_train,X_test,y_train,y_test=load_data_regression() 
# 调用 test_LinearSVR
test_SVR_linear(X_train,X_test,y_train,y_test)

python 机器学习之支持向量机非线性回归SVR模型

def test_SVR_poly(*data):
  '''
  测试 多项式核的 SVR 的预测性能随 degree、gamma、coef0 的影响.
  '''
  X_train,X_test,y_train,y_test=data
  fig=plt.figure()
  ### 测试 degree ####
  degrees=range(1,20)
  train_scores=[]
  test_scores=[]
  for degree in degrees:
    regr=svm.SVR(kernel='poly',degree=degree,coef0=1)
    regr.fit(X_train,y_train)
    train_scores.append(regr.score(X_train,y_train))
    test_scores.append(regr.score(X_test, y_test))
  ax=fig.add_subplot(1,3,1)
  ax.plot(degrees,train_scores,label="Training score ",marker='+' )
  ax.plot(degrees,test_scores,label= " Testing score ",marker='o' )
  ax.set_title( "SVR_poly_degree r=1")
  ax.set_xlabel("p")
  ax.set_ylabel("score")
  ax.set_ylim(-1,1.)
  ax.legend(loc="best",framealpha=0.5)

  ### 测试 gamma,固定 degree为3, coef0 为 1 ####
  gammas=range(1,40)
  train_scores=[]
  test_scores=[]
  for gamma in gammas:
    regr=svm.SVR(kernel='poly',gamma=gamma,degree=3,coef0=1)
    regr.fit(X_train,y_train)
    train_scores.append(regr.score(X_train,y_train))
    test_scores.append(regr.score(X_test, y_test))
  ax=fig.add_subplot(1,3,2)
  ax.plot(gammas,train_scores,label="Training score ",marker='+' )
  ax.plot(gammas,test_scores,label= " Testing score ",marker='o' )
  ax.set_title( "SVR_poly_gamma r=1")
  ax.set_xlabel(r"$\gamma$")
  ax.set_ylabel("score")
  ax.set_ylim(-1,1)
  ax.legend(loc="best",framealpha=0.5)
  ### 测试 r,固定 gamma 为 20,degree为 3 ######
  rs=range(0,20)
  train_scores=[]
  test_scores=[]
  for r in rs:
    regr=svm.SVR(kernel='poly',gamma=20,degree=3,coef0=r)
    regr.fit(X_train,y_train)
    train_scores.append(regr.score(X_train,y_train))
    test_scores.append(regr.score(X_test, y_test))
  ax=fig.add_subplot(1,3,3)
  ax.plot(rs,train_scores,label="Training score ",marker='+' )
  ax.plot(rs,test_scores,label= " Testing score ",marker='o' )
  ax.set_title( "SVR_poly_r gamma=20 degree=3")
  ax.set_xlabel(r"r")
  ax.set_ylabel("score")
  ax.set_ylim(-1,1.)
  ax.legend(loc="best",framealpha=0.5)
  plt.show()
  
# 调用 test_SVR_poly
test_SVR_poly(X_train,X_test,y_train,y_test)

python 机器学习之支持向量机非线性回归SVR模型

def test_SVR_rbf(*data):
  '''
  测试 高斯核的 SVR 的预测性能随 gamma 参数的影响
  '''
  X_train,X_test,y_train,y_test=data
  gammas=range(1,20)
  train_scores=[]
  test_scores=[]
  for gamma in gammas:
    regr=svm.SVR(kernel='rbf',gamma=gamma)
    regr.fit(X_train,y_train)
    train_scores.append(regr.score(X_train,y_train))
    test_scores.append(regr.score(X_test, y_test))
  fig=plt.figure()
  ax=fig.add_subplot(1,1,1)
  ax.plot(gammas,train_scores,label="Training score ",marker='+' )
  ax.plot(gammas,test_scores,label= " Testing score ",marker='o' )
  ax.set_title( "SVR_rbf")
  ax.set_xlabel(r"$\gamma$")
  ax.set_ylabel("score")
  ax.set_ylim(-1,1)
  ax.legend(loc="best",framealpha=0.5)
  plt.show()
  
# 调用 test_SVR_rbf
test_SVR_rbf(X_train,X_test,y_train,y_test)

python 机器学习之支持向量机非线性回归SVR模型

def test_SVR_sigmoid(*data):
  '''
  测试 sigmoid 核的 SVR 的预测性能随 gamma、coef0 的影响.
  '''
  X_train,X_test,y_train,y_test=data
  fig=plt.figure()

  ### 测试 gammam,固定 coef0 为 0.01 ####
  gammas=np.logspace(-1,3)
  train_scores=[]
  test_scores=[]

  for gamma in gammas:
    regr=svm.SVR(kernel='sigmoid',gamma=gamma,coef0=0.01)
    regr.fit(X_train,y_train)
    train_scores.append(regr.score(X_train,y_train))
    test_scores.append(regr.score(X_test, y_test))
  ax=fig.add_subplot(1,2,1)
  ax.plot(gammas,train_scores,label="Training score ",marker='+' )
  ax.plot(gammas,test_scores,label= " Testing score ",marker='o' )
  ax.set_title( "SVR_sigmoid_gamma r=0.01")
  ax.set_xscale("log")
  ax.set_xlabel(r"$\gamma$")
  ax.set_ylabel("score")
  ax.set_ylim(-1,1)
  ax.legend(loc="best",framealpha=0.5)
  ### 测试 r ,固定 gamma 为 10 ######
  rs=np.linspace(0,5)
  train_scores=[]
  test_scores=[]

  for r in rs:
    regr=svm.SVR(kernel='sigmoid',coef0=r,gamma=10)
    regr.fit(X_train,y_train)
    train_scores.append(regr.score(X_train,y_train))
    test_scores.append(regr.score(X_test, y_test))
  ax=fig.add_subplot(1,2,2)
  ax.plot(rs,train_scores,label="Training score ",marker='+' )
  ax.plot(rs,test_scores,label= " Testing score ",marker='o' )
  ax.set_title( "SVR_sigmoid_r gamma=10")
  ax.set_xlabel(r"r")
  ax.set_ylabel("score")
  ax.set_ylim(-1,1)
  ax.legend(loc="best",framealpha=0.5)
  plt.show()
  
# 调用 test_SVR_sigmoid
test_SVR_sigmoid(X_train,X_test,y_train,y_test)

python 机器学习之支持向量机非线性回归SVR模型

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python中随机函数random用法实例
Apr 30 Python
Python实现字典依据value排序
Feb 24 Python
python机器学习实战之树回归详解
Dec 20 Python
如何安装多版本python python2和python3共存以及pip共存
Sep 18 Python
python整小时 整天时间戳获取算法示例
Feb 20 Python
numpy库与pandas库axis=0,axis= 1轴的用法详解
May 27 Python
Django框架 信号调度原理解析
Sep 04 Python
Python 实现OpenCV格式和PIL.Image格式互转
Jan 09 Python
python tkinter GUI绘制,以及点击更新显示图片代码
Mar 14 Python
Python通过文本和图片生成词云图
May 21 Python
如何让python的运行速度得到提升
Jul 08 Python
conda安装tensorflow和conda常用命令小结
Feb 20 Python
python机器学习库scikit-learn:SVR的基本应用
Jun 26 #Python
Python Numpy 实现交换两行和两列的方法
Jun 26 #Python
python 字典操作提取key,value的方法
Jun 26 #Python
通过PYTHON来实现图像分割详解
Jun 26 #Python
Flask模板引擎之Jinja2语法介绍
Jun 26 #Python
如何使用Python实现自动化水军评论
Jun 26 #Python
详解用pyecharts Geo实现动态数据热力图城市找不到问题解决
Jun 26 #Python
You might like
PHP 动态随机生成验证码类代码
2010/04/09 PHP
PHP设计模式 注册表模式
2012/02/05 PHP
smarty中js的调用方法示例
2014/10/27 PHP
JS实现随机数生成算法示例代码
2013/08/08 Javascript
jquery实现在光标位置插入内容的方法
2015/02/05 Javascript
Javascript核心读书有感之语句
2015/02/11 Javascript
jQuery判断指定id的对象是否存在的方法
2015/05/22 Javascript
JavaScript取得键盘按下方向键是哪个的方法
2015/08/04 Javascript
jQuery实用技巧必备(上)
2015/11/02 Javascript
JS简单实现String转Date的方法
2016/03/02 Javascript
jQuery简单实现提交数据出现loading进度条的方法
2016/03/29 Javascript
jQuery实现下拉加载功能实例代码
2016/04/01 Javascript
Bootstrap按钮功能之查询按钮和重置按钮
2016/10/26 Javascript
Javascript中的prototype与继承
2017/02/06 Javascript
Windows下支持自动更新的Electron应用脚手架的方法
2018/12/24 Javascript
vue + any-touch实现一个iscroll 实现拖拽和滑动动画效果
2019/04/08 Javascript
Vue中的组件及路由使用实例代码详解
2019/05/22 Javascript
浅谈vue中document.getElementById()拿到的是原值的问题
2020/07/26 Javascript
[30:51]DOTA2上海特级锦标赛主赛事日 - 3 胜者组第二轮#1Liquid VS MVP.Phx第一局
2016/03/04 DOTA
Python描述器descriptor详解
2015/02/03 Python
python列出目录下指定文件与子目录的方法
2015/07/03 Python
Python探索之URL Dispatcher实例详解
2017/10/28 Python
TensorFlow实现创建分类器
2018/02/06 Python
python实现跨excel的工作表sheet之间的复制方法
2018/05/03 Python
深入浅析Python的类
2018/06/22 Python
Django+zTree构建组织架构树的方法
2019/08/21 Python
Python 内置函数globals()和locals()对比详解
2019/12/23 Python
django 取消csrf限制的实例
2020/03/13 Python
django rest framework 自定义返回方式
2020/07/12 Python
Python实现PS滤镜中的USM锐化效果
2020/12/04 Python
意大利巧克力店:Chocolate Shop
2019/07/24 全球购物
社区包粽子活动方案
2014/01/21 职场文书
推广活动策划方案
2014/08/23 职场文书
2014年文员工作总结
2014/11/18 职场文书
详细了解MVC+proxy
2021/07/09 Java/Android
SQL Server内存机制浅探
2022/04/06 SQL Server