Python性能优化的20条建议


Posted in Python onOctober 25, 2014

优化算法时间复杂度

算法的时间复杂度对程序的执行效率影响最大,在Python中可以通过选择合适的数据结构来优化时间复杂度,如list和set查找某一个元素的时间复杂度分别是O(n)和O(1)。不同的场景有不同的优化方式,总得来说,一般有分治,分支界限,贪心,动态规划等思想。

减少冗余数据

如用上三角或下三角的方式去保存一个大的对称矩阵。在0元素占大多数的矩阵里使用稀疏矩阵表示。

合理使用copy与deepcopy

对于dict和list等数据结构的对象,直接赋值使用的是引用的方式。而有些情况下需要复制整个对象,这时可以使用copy包里的copy和deepcopy,这两个函数的不同之处在于后者是递归复制的。效率也不一样:(以下程序在ipython中运行)

import copy
a = range(100000)
%timeit -n 10 copy.copy(a) # 运行10次 copy.copy(a)
%timeit -n 10 copy.deepcopy(a)
10 loops, best of 3: 1.55 ms per loop
10 loops, best of 3: 151 ms per loop

timeit后面的-n表示运行的次数,后两行对应的是两个timeit的输出,下同。由此可见后者慢一个数量级。

使用dict或set查找元素

python dict和set都是使用hash表来实现(类似c++11标准库中unordered_map),查找元素的时间复杂度是O(1)

a = range(1000)
s = set(a)
d = dict((i,1) for i in a)
%timeit -n 10000 100 in d
%timeit -n 10000 100 in s
10000 loops, best of 3: 43.5 ns per loop
10000 loops, best of 3: 49.6 ns per loop

dict的效率略高(占用的空间也多一些)。

合理使用生成器(generator)和yield

%timeit -n 100 a = (i for i in range(100000))
%timeit -n 100 b = [i for i in range(100000)]
100 loops, best of 3: 1.54 ms per loop
100 loops, best of 3: 4.56 ms per loop

使用()得到的是一个generator对象,所需要的内存空间与列表的大小无关,所以效率会高一些。在具体应用上,比如set(i for i in range(100000))会比set([i for i in range(100000)])快。

但是对于需要循环遍历的情况:

%timeit -n 10 for x in (i for i in range(100000)): pass
%timeit -n 10 for x in [i for i in range(100000)]: pass
10 loops, best of 3: 6.51 ms per loop
10 loops, best of 3: 5.54 ms per loop

后者的效率反而更高,但是如果循环里有break,用generator的好处是显而易见的。yield也是用于创建generator:

def yield_func(ls):
 for i in ls:
 yield i+1

def not_yield_func(ls):
 return [i+1 for i in ls]

ls = range(1000000)
%timeit -n 10 for i in yield_func(ls):pass
%timeit -n 10 for i in not_yield_func(ls):pass
10 loops, best of 3: 63.8 ms per loop
10 loops, best of 3: 62.9 ms per loop

对于内存不是非常大的list,可以直接返回一个list,但是可读性yield更佳(人个喜好)。

python2.x内置generator功能的有xrange函数、itertools包等。

优化循环

循环之外能做的事不要放在循环内,比如下面的优化可以快一倍:

a = range(10000)
size_a = len(a)
%timeit -n 1000 for i in a: k = len(a)
%timeit -n 1000 for i in a: k = size_a
1000 loops, best of 3: 569 µs per loop
1000 loops, best of 3: 256 µs per loop

优化包含多个判断表达式的顺序

对于and,应该把满足条件少的放在前面,对于or,把满足条件多的放在前面。如:

a = range(2000) 
%timeit -n 100 [i for i in a if 10 < i < 20 or 1000 < i < 2000]
%timeit -n 100 [i for i in a if 1000 < i < 2000 or 100 < i < 20] 
%timeit -n 100 [i for i in a if i % 2 == 0 and i > 1900]
%timeit -n 100 [i for i in a if i > 1900 and i % 2 == 0]
100 loops, best of 3: 287 µs per loop
100 loops, best of 3: 214 µs per loop
100 loops, best of 3: 128 µs per loop
100 loops, best of 3: 56.1 µs per loop

使用join合并迭代器中的字符串

In [1]: %%timeit
 ...: s = ''
 ...: for i in a:
 ...:  s += i
 ...:
10000 loops, best of 3: 59.8 µs per loop

In [2]: %%timeit
s = ''.join(a)
 ...:
100000 loops, best of 3: 11.8 µs per loop

join对于累加的方式,有大约5倍的提升。

选择合适的格式化字符方式

s1, s2 = 'ax', 'bx'
%timeit -n 100000 'abc%s%s' % (s1, s2)
%timeit -n 100000 'abc{0}{1}'.format(s1, s2)
%timeit -n 100000 'abc' + s1 + s2
100000 loops, best of 3: 183 ns per loop
100000 loops, best of 3: 169 ns per loop
100000 loops, best of 3: 103 ns per loop

三种情况中,%的方式是最慢的,但是三者的差距并不大(都非常快)。(个人觉得%的可读性最好)

不借助中间变量交换两个变量的值

In [3]: %%timeit -n 10000
 a,b=1,2
 ....: c=a;a=b;b=c;
 ....:
10000 loops, best of 3: 172 ns per loop

In [4]: %%timeit -n 10000
a,b=1,2
a,b=b,a
 ....:
10000 loops, best of 3: 86 ns per loop

使用a,b=b,a而不是c=a;a=b;b=c;来交换a,b的值,可以快1倍以上。

使用if is

a = range(10000)
%timeit -n 100 [i for i in a if i == True]
%timeit -n 100 [i for i in a if i is True]
100 loops, best of 3: 531 µs per loop
100 loops, best of 3: 362 µs per loop

使用 if is Trueif == True 将近快一倍。

使用级联比较x < y < z

x, y, z = 1,2,3
%timeit -n 1000000 if x < y < z:pass
%timeit -n 1000000 if x < y and y < z:pass
1000000 loops, best of 3: 101 ns per loop
1000000 loops, best of 3: 121 ns per loop

x < y < z效率略高,而且可读性更好。

while 1while True 更快

def while_1():
 n = 100000
 while 1:
 n -= 1
 if n <= 0: break
def while_true():
 n = 100000
 while True:
 n -= 1
 if n <= 0: break 

m, n = 1000000, 1000000 
%timeit -n 100 while_1()
%timeit -n 100 while_true()
100 loops, best of 3: 3.69 ms per loop
100 loops, best of 3: 5.61 ms per loop

while 1 比 while true快很多,原因是在python2.x中,True是一个全局变量,而非关键字。

使用**而不是pow

%timeit -n 10000 c = pow(2,20)
%timeit -n 10000 c = 2**20
10000 loops, best of 3: 284 ns per loop
10000 loops, best of 3: 16.9 ns per loop

**就是快10倍以上!

使用 cProfile, cStringIO 和 cPickle等用c实现相同功能(分别对应profile, StringIO, pickle)的包

import cPickle
import pickle
a = range(10000)
%timeit -n 100 x = cPickle.dumps(a)
%timeit -n 100 x = pickle.dumps(a)
100 loops, best of 3: 1.58 ms per loop
100 loops, best of 3: 17 ms per loop

由c实现的包,速度快10倍以上!

使用最佳的反序列化方式

下面比较了eval, cPickle, json方式三种对相应字符串反序列化的效率:

import json
import cPickle
a = range(10000)
s1 = str(a)
s2 = cPickle.dumps(a)
s3 = json.dumps(a)
%timeit -n 100 x = eval(s1)
%timeit -n 100 x = cPickle.loads(s2)
%timeit -n 100 x = json.loads(s3)
100 loops, best of 3: 16.8 ms per loop
100 loops, best of 3: 2.02 ms per loop
100 loops, best of 3: 798 µs per loop

可见json比cPickle快近3倍,比eval快20多倍。

使用C扩展(Extension)

目前主要有CPython(python最常见的实现的方式)原生API, ctypes,Cython,cffi三种方式,它们的作用是使得Python程序可以调用由C编译成的动态链接库,其特点分别是:

CPython原生API: 通过引入Python.h头文件,对应的C程序中可以直接使用Python的数据结构。实现过程相对繁琐,但是有比较大的适用范围。

ctypes: 通常用于封装(wrap)C程序,让纯Python程序调用动态链接库(Windows中的dll或Unix中的so文件)中的函数。如果想要在python中使用已经有C类库,使用ctypes是很好的选择,有一些基准测试下,python2+ctypes是性能最好的方式。

Cython: Cython是CPython的超集,用于简化编写C扩展的过程。Cython的优点是语法简洁,可以很好地兼容numpy等包含大量C扩展的库。Cython的使得场景一般是针对项目中某个算法或过程的优化。在某些测试中,可以有几百倍的性能提升。

cffi: cffi的就是ctypes在pypy(详见下文)中的实现,同进也兼容CPython。cffi提供了在python使用C类库的方式,可以直接在python代码中编写C代码,同时支持链接到已有的C类库。

使用这些优化方式一般是针对已有项目性能瓶颈模块的优化,可以在少量改动原有项目的情况下大幅度地提高整个程序的运行效率。

并行编程

因为GIL的存在,Python很难充分利用多核CPU的优势。但是,可以通过内置的模块multiprocessing实现下面几种并行模式:

多进程:对于CPU密集型的程序,可以使用multiprocessing的Process,Pool等封装好的类,通过多进程的方式实现并行计算。但是因为进程中的通信成本比较大,对于进程之间需要大量数据交互的程序效率未必有大的提高。

多线程:对于IO密集型的程序,multiprocessing.dummy模块使用multiprocessing的接口封装threading,使得多线程编程也变得非常轻松(比如可以使用Pool的map接口,简洁高效)。

分布式:multiprocessing中的Managers类提供了可以在不同进程之共享数据的方式,可以在此基础上开发出分布式的程序。

不同的业务场景可以选择其中的一种或几种的组合实现程序性能的优化。

终级大杀器:PyPy

PyPy是用RPython(CPython的子集)实现的Python,根据官网的基准测试数据,它比CPython实现的Python要快6倍以上。快的原因是使用了Just-in-Time(JIT)编译器,即动态编译器,与静态编译器(如gcc,javac等)不同,它是利用程序运行的过程的数据进行优化。由于历史原因,目前pypy中还保留着GIL,不过正在进行的STM项目试图将PyPy变成没有GIL的Python。

如果python程序中含有C扩展(非cffi的方式),JIT的优化效果会大打折扣,甚至比CPython慢(比Numpy)。所以在PyPy中最好用纯Python或使用cffi扩展。

随着STM,Numpy等项目的完善,相信PyPy将会替代CPython。

使用性能分析工具

除了上面在ipython使用到的timeit模块,还有cProfile。cProfile的使用方式也非常简单: python -m cProfile filename.pyfilename.py 是要运行程序的文件名,可以在标准输出中看到每一个函数被调用的次数和运行的时间,从而找到程序的性能瓶颈,然后可以有针对性地优化。

参考

[1] http://www.ibm.com/developerworks/cn/linux/l-cn-python-optim/

[2] http://maxburstein.com/blog/speeding-up-your-python-code/

原文:http://segmentfault.com/blog/defool/1190000000666603

Python 相关文章推荐
使用python提取html文件中的特定数据的实现代码
Mar 24 Python
Python的设计模式编程入门指南
Apr 02 Python
Python常用的内置序列结构(列表、元组、字典)学习笔记
Jul 08 Python
Python实现二维数组按照某行或列排序的方法【numpy lexsort】
Sep 22 Python
详解Python if-elif-else知识点
Jun 11 Python
django配置连接数据库及原生sql语句的使用方法
Mar 03 Python
Python3模拟登录操作实例分析
Mar 12 Python
python接口自动化(十七)--Json 数据处理---一次爬坑记(详解)
Apr 18 Python
Appium+python自动化怎么查看程序所占端口号和IP
Jun 14 Python
python自动分箱,计算woe,iv的实例代码
Nov 22 Python
matplotlib 对坐标的控制,加图例注释的操作
Apr 17 Python
Python 中random 库的详细使用
Jun 03 Python
跟老齐学Python之网站的结构
Oct 24 #Python
跟老齐学Python之折腾一下目录
Oct 24 #Python
跟老齐学Python之私有函数和专有方法
Oct 24 #Python
跟老齐学Python之模块的加载
Oct 24 #Python
python和shell实现的校验IP地址合法性脚本分享
Oct 23 #Python
探寻python多线程ctrl+c退出问题解决方案
Oct 23 #Python
纯Python开发的nosql数据库CodernityDB介绍和使用实例
Oct 23 #Python
You might like
php 下载保存文件保存到本地的两种实现方法
2013/08/12 PHP
Drupal7连接多个数据库及常见问题解决
2014/03/02 PHP
php简单解析mysqli查询结果的方法(2种方法)
2016/06/29 PHP
Yii实现文章列表置顶功能示例
2016/10/18 PHP
Yii2实现中国省市区三级联动实例
2017/02/08 PHP
PHP调用QQ互联接口实现QQ登录网站功能示例
2019/10/24 PHP
用javascript实现的支持lrc歌词的播放器
2007/05/17 Javascript
JSON 客户端和服务器端的格式转换
2009/08/27 Javascript
让浏览器非阻塞加载javascript的几种方法小结
2011/04/25 Javascript
zShowBox 图片放大展示jquery版 兼容性
2011/09/24 Javascript
优化Node.js Web应用运行速度的10个技巧
2014/09/03 Javascript
JavaScript的null和undefined区别示例介绍
2014/09/15 Javascript
详解JS中的快速排序与冒泡
2017/01/10 Javascript
收藏AngularJS中最重要的核心功能
2017/07/09 Javascript
详解使用nvm安装node.js
2017/07/18 Javascript
vue Element-ui input 远程搜索与修改建议显示模版的示例代码
2017/10/19 Javascript
vue如何在自定义组件中使用v-model
2018/05/14 Javascript
微信用户访问小程序的登录过程详解
2019/09/20 Javascript
[01:02:48]2018DOTA2亚洲邀请赛 4.1 小组赛 A组 LGD vs OG
2018/04/02 DOTA
详解Python中的type()方法的使用
2015/05/21 Python
Python二分查找详解
2015/09/13 Python
Python编程实现双击更新所有已安装python模块的方法
2017/06/05 Python
解决Python2.7读写文件中的中文乱码问题
2018/04/12 Python
python yield关键词案例测试
2019/10/15 Python
Django 解决distinct无法去除重复数据的问题
2020/05/20 Python
Keras自定义IOU方式
2020/06/10 Python
keras 实现轻量级网络ShuffleNet教程
2020/06/19 Python
免费获得微软MCSD证书赶快行动吧!
2012/11/13 HTML / CSS
精美的手工家居和生活用品:Nkuku
2019/11/01 全球购物
优秀研究生自我鉴定
2013/12/04 职场文书
数控专业大学毕业生职业规划范文
2014/02/06 职场文书
社区文明倡议书
2015/04/28 职场文书
庆七一晚会主持词
2015/06/30 职场文书
Feign调用全局异常处理解决方案
2021/06/24 Java/Android
Java移除无效括号的方法实现
2021/08/07 Java/Android
不负正版帝国之名 《重返帝国》引领SLG手游制作新的标杆
2022/04/07 其他游戏