pytorch下的unsqueeze和squeeze的用法说明


Posted in Python onFebruary 06, 2021

#squeeze 函数:从数组的形状中删除单维度条目,即把shape中为1的维度去掉

#unsqueeze() 是squeeze()的反向操作,增加一个维度,该维度维数为1,可以指定添加的维度。例如unsqueeze(a,1)表示在1这个维度进行添加

import torch 
a=torch.rand(2,3,1)       
print(torch.unsqueeze(a,2).size())#torch.Size([2, 3, 1, 1]) 
print(a.size())         #torch.Size([2, 3, 1])
print(a.squeeze().size())    #torch.Size([2, 3]) 
print(a.squeeze(0).size())   #torch.Size([2, 3, 1])
 
print(a.squeeze(-1).size())   #torch.Size([2, 3])
print(a.size())         #torch.Size([2, 3, 1])
print(a.squeeze(-2).size())   #torch.Size([2, 3, 1])
print(a.squeeze(-3).size())   #torch.Size([2, 3, 1])
print(a.squeeze(1).size())   #torch.Size([2, 3, 1])
print(a.squeeze(2).size())   #torch.Size([2, 3])
print(a.squeeze(3).size())   #RuntimeError: Dimension out of range (expected to be in range of [-3, 2], but got 3)
 
print(a.unsqueeze().size())   #TypeError: unsqueeze() missing 1 required positional arguments: "dim"
print(a.unsqueeze(-3).size())  #torch.Size([2, 1, 3, 1])
print(a.unsqueeze(-2).size())  #torch.Size([2, 3, 1, 1])
print(a.unsqueeze(-1).size())  #torch.Size([2, 3, 1, 1])
print(a.unsqueeze(0).size())  #torch.Size([1, 2, 3, 1])
print(a.unsqueeze(1).size())  #torch.Size([2, 1, 3, 1])
print(a.unsqueeze(2).size())  #torch.Size([2, 3, 1, 1])
print(a.unsqueeze(3).size())  #torch.Size([2, 3, 1, 1])
print(torch.unsqueeze(a,3))
b=torch.rand(2,1,3,1)
print(b.squeeze().size())    #torch.Size([2, 3])

补充:pytorch中unsqueeze()、squeeze()、expand()、repeat()、view()、和cat()函数的总结

学习Bert模型的时候,需要使用到pytorch来进行tensor的操作,由于对pytorch和tensor不熟悉,就把pytorch中常用的、有关tensor操作的unsqueeze()、squeeze()、expand()、view()、cat()和repeat()等函数做一个总结,加深记忆。

1、unsqueeze()和squeeze()

torch.unsqueeze(input, dim,out=None) → Tensor

unsqueeze()的作用是用来增加给定tensor的维度的,unsqueeze(dim)就是在维度序号为dim的地方给tensor增加一维。例如:维度为torch.Size([768])的tensor要怎样才能变为torch.Size([1, 768, 1])呢?就可以用到unsqueeze(),直接上代码:

a=torch.randn(768)
print(a.shape) # torch.Size([768])
a=a.unsqueeze(0)
print(a.shape) #torch.Size([1, 768])
a = a.unsqueeze(2)
print(a.shape) #torch.Size([1, 768, 1])

也可以直接使用链式编程:

a=torch.randn(768)
print(a.shape) # torch.Size([768])
a=a.unsqueeze(1).unsqueeze(0)
print(a.shape) #torch.Size([1, 768, 1])

tensor经过unsqueeze()处理之后,总数据量不变;维度的扩展类似于list不变直接在外面加几层[]括号。

torch.squeeze(input, dim=None, out=None) → Tensor

squeeze()的作用就是压缩维度,直接把维度为1的维给去掉。形式上表现为,去掉一层[]括号。

同时,输出的张量与原张量共享内存,如果改变其中的一个,另一个也会改变。

a=torch.randn(2,1,768)
print(a)
print(a.shape) #torch.Size([2, 1, 768])
a=a.squeeze()
print(a)
print(a.shape) #torch.Size([2, 768])

pytorch下的unsqueeze和squeeze的用法说明

图片中的维度信息就不一样,红框中的括号层数不同。

注意的是:squeeze()只能压缩维度为1的维;其他大小的维不起作用。

a=torch.randn(2,768)
print(a.shape) #torch.Size([2, 768])
a=a.squeeze()
print(a.shape) #torch.Size([2, 768])

2、expand()

这个函数的作用就是对指定的维度进行数值大小的改变。只能改变维大小为1的维,否则就会报错。不改变的维可以传入-1或者原来的数值。

torch.Tensor.expand(*sizes) → Tensor

返回张量的一个新视图,可以将张量的单个维度扩大为更大的尺寸。

a=torch.randn(1,1,3,768)
print(a) 
print(a.shape) #torch.Size([1, 1, 3, 768])
b=a.expand(2,-1,-1,-1)
print(b)
print(b.shape) #torch.Size([2, 1, 3, 768])
c=a.expand(2,1,3,768)
print(c.shape) #torch.Size([2, 1, 3, 768])

可以看到b和c的维度是一样的

pytorch下的unsqueeze和squeeze的用法说明

第0维由1变为2,可以看到就直接把原来的tensor在该维度上复制了一下。

3、repeat()

repeat(*sizes)

沿着指定的维度,对原来的tensor进行数据复制。这个函数和expand()还是有点区别的。expand()只能对维度为1的维进行扩大,而repeat()对所有的维度可以随意操作。

a=torch.randn(2,1,768)
print(a)
print(a.shape) #torch.Size([2, 1, 768])
b=a.repeat(1,2,1)
print(b)
print(b.shape) #torch.Size([2, 2, 768])
c=a.repeat(3,3,3)
print(c)
print(c.shape) #torch.Size([6, 3, 2304])

b表示对a的对应维度进行乘以1,乘以2,乘以1的操作,所以b:torch.Size([2, 1, 768])

c表示对a的对应维度进行乘以3,乘以3,乘以3的操作,所以c:torch.Size([6, 3, 2304])

a:

pytorch下的unsqueeze和squeeze的用法说明

b

pytorch下的unsqueeze和squeeze的用法说明

c

pytorch下的unsqueeze和squeeze的用法说明

4、view()

tensor.view()这个函数有点类似reshape的功能,简单的理解就是:先把一个tensor转换成一个一维的tensor,然后再组合成指定维度的tensor。例如:

word_embedding=torch.randn(16,3,768)
print(word_embedding.shape)
new_word_embedding=word_embedding.view(8,6,768)
print(new_word_embedding.shape)

当然这里指定的维度的乘积一定要和原来的tensor的维度乘积相等,不然会报错的。16*3*768=8*6*768

另外当我们需要改变一个tensor的维度的时候,知道关键的维度,有不想手动的去计算其他的维度值,就可以使用view(-1),pytorch就会自动帮你计算出来。

word_embedding=torch.randn(16,3,768)
print(word_embedding.shape)
new_word_embedding=word_embedding.view(-1)
print(new_word_embedding.shape)
new_word_embedding=word_embedding.view(1,-1)
print(new_word_embedding.shape)
new_word_embedding=word_embedding.view(-1,768)
print(new_word_embedding.shape)

结果如下:使用-1以后,就会自动得到其他维度维。

pytorch下的unsqueeze和squeeze的用法说明

需要特别注意的是:view(-1,-1)这样的用法就会出错。也就是说view()函数中只能出现单个-1。

5、cat()

cat(seq,dim,out=None),表示把两个或者多个tensor拼接起来。

其中 seq表示要连接的两个序列,以元组的形式给出,例如:seq=(a,b), a,b 为两个可以连接的序列

dim 表示以哪个维度连接,dim=0, 横向连接 dim=1,纵向连接

a=torch.randn(4,3)
b=torch.randn(4,3)
 
c=torch.cat((a,b),dim=0)#横向拼接,增加行 torch.Size([8, 3])
print(c.shape)
d=torch.cat((a,b),dim=1)#纵向拼接,增加列 torch.Size([4, 6])
print(d.shape)

还有一种写法:cat(list,dim,out=None),其中list中的元素为tensor。

tensors=[]
for i in range(10):
  tensors.append(torch.randn(4,3))
a=torch.cat(tensors,dim=0) #torch.Size([40, 3])
print(a.shape)
b=torch.cat(tensors,dim=1) #torch.Size([4, 30])
print(b.shape)

结果:

torch.Size([40, 3])
torch.Size([4, 30])

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。如有错误或未考虑完全的地方,望不吝赐教。

Python 相关文章推荐
python生成验证码图片代码分享
Jan 28 Python
浅谈numpy中linspace的用法 (等差数列创建函数)
Jun 07 Python
Python解决N阶台阶走法问题的方法分析
Dec 28 Python
Python实现的用户登录系统功能示例
Feb 05 Python
Django分页查询并返回jsons数据(中文乱码解决方法)
Aug 02 Python
Python中GIL的使用详解
Oct 03 Python
python利用跳板机ssh远程连接redis的方法
Feb 19 Python
Python实现的插入排序,冒泡排序,快速排序,选择排序算法示例
May 04 Python
Pycharm远程调试原理及具体配置详解
Aug 08 Python
python的mysql数据库建立表与插入数据操作示例
Sep 30 Python
win10环境下配置vscode python开发环境的教程详解
Oct 16 Python
Python自动巡检H3C交换机实现过程解析
Aug 14 Python
一文带你掌握Pyecharts地理数据可视化的方法
Feb 06 #Python
解决pycharm不能自动保存在远程linux中的问题
Feb 06 #Python
Python第三方库安装缓慢的解决方法
Feb 06 #Python
python中threading和queue库实现多线程编程
Feb 06 #Python
Python3爬虫ChromeDriver的安装实例
Feb 06 #Python
解决pycharm修改代码后第一次运行不生效的问题
Feb 06 #Python
Python tkinter之ComboBox(下拉框)的使用简介
Feb 05 #Python
You might like
PHP中常用数组处理方法实例分析
2008/08/30 PHP
php 伪静态之IIS篇
2014/06/02 PHP
常用PHP数组排序函数归纳
2016/08/08 PHP
Yii2 中实现单点登录的方法
2018/03/09 PHP
php使用pecl方式安装扩展操作示例
2019/08/12 PHP
laravel框架如何设置公共头和公共尾
2019/10/22 PHP
JavaScript动态创建div属性和样式示例代码
2013/10/09 Javascript
使用text方法获取Html元素文本信息示例
2014/09/01 Javascript
浅谈javascript回调函数
2014/12/07 Javascript
谈谈javascript中使用连等赋值操作带来的问题
2015/11/26 Javascript
基于AngularJs + Bootstrap + AngularStrap相结合实现省市区联动代码
2016/05/30 Javascript
Js调用Java方法并互相传参的简单实例
2016/08/11 Javascript
JavaScript中闭包之浅析解读(必看篇)
2016/08/25 Javascript
原生JS实现网络彩票投注效果
2016/09/25 Javascript
js/jq仿window文件夹移动/剪切/复制等操作代码
2017/03/08 Javascript
JavaScript数据结构之优先队列与循环队列实例详解
2017/10/27 Javascript
nodejs async异步常用函数总结(推荐)
2017/11/17 NodeJs
基于原生js实现判断元素是否有指定class名
2020/07/11 Javascript
Eclipse + Python 的安装与配置流程
2013/03/05 Python
Python的Flask框架中Flask-Admin库的简单入门指引
2015/04/07 Python
Python使用sftp实现上传和下载功能(实例代码)
2017/03/14 Python
Python3导入CSV文件的实例(跟Python2有些许的不同)
2018/06/22 Python
基于pandas将类别属性转化为数值属性的方法
2018/07/25 Python
python得到单词模式的示例
2018/10/15 Python
flask session组件的使用示例
2018/12/25 Python
如何基于python生成list的所有的子集
2019/11/11 Python
使用python实现CGI环境搭建过程解析
2020/04/28 Python
Origins悦木之源英国官网:雅诗兰黛集团高端植物护肤品牌
2017/11/06 全球购物
日语系毕业求职信
2014/07/27 职场文书
党员争先创优承诺书
2015/01/20 职场文书
村党组织公开承诺书
2015/04/30 职场文书
让世界充满爱观后感
2015/06/10 职场文书
经典励志格言:每日一句,让你每天充满能量
2019/08/16 职场文书
Redis基于Bitmap实现用户签到功能
2021/06/20 Redis
Mysql数据库中datetime、bigint、timestamp来表示时间选择,谁来存储时间效率最高
2021/08/23 MySQL
MySQL中LAG()函数和LEAD()函数的使用
2022/08/14 MySQL