一文带你掌握Pyecharts地理数据可视化的方法


Posted in Python onFebruary 06, 2021

本文主要介绍了Pyecharts地理数据可视化,分享给大家,具体如下:

一文带你掌握Pyecharts地理数据可视化的方法

一、Pyecharts简介和安装

1. 简介

Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。

  • 简洁的 API 设计,使用如丝滑般流畅,支持链式调用
  • 囊括了 30+ 种常见图表,应有尽有
  • 支持主流 Notebook 环境,Jupyter Notebook 和 JupyterLab
  • 可轻松集成至 Flask,Sanic,Django 等主流 Web 框架
  • 高度灵活的配置项,可轻松搭配出精美的图表
  • 详细的文档和示例,帮助开发者更快的上手项目
  • 多达 400+ 地图文件,并且支持原生百度地图,为地理数据可视化提供强有力的支持

pyecharts版本v0.5.x 和 v1 间不兼容,v1 是一个全新的版本,语法也有很大不同。

2. 安装

安装pyecharts

pip install pyecharts -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
import pyecharts
print(pyecharts.__version__)     # 查看当前pyecharts版本

安装相关的地图扩展包

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-countries-pypkg  		# 全球国家地图
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-china-provinces-pypkg  # 中国省级地图
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-china-cities-pypkg   # 中国市级地图
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-china-counties-pypkg  # 中国县区级地图

二、地图可视化

1. 世界地图

利用 Starbucks.csv 中的数据,首先计算每个国家(Country)对应的门店数量,然后使用世界地图可视化展示星巴克门面店在全球的数量分布。

# -*- coding: UTF-8 -*-
"""
@File  :demo1.py
@Author :叶庭云
@CSDN  :https://yetingyun.blog.csdn.net/
"""
import pandas as pd
from pyecharts.charts import Map
from pyecharts import options as opts
from pyecharts.globals import ThemeType, CurrentConfig

CurrentConfig.ONLINE_HOST = 'D:/python/pyecharts-assets-master/assets/'

# pandas读取csv文件里的数据
df = pd.read_csv("Starbucks.csv")['Country']
# 统计各个地区星巴克门店数量
data = df.value_counts()
datas = [(i, int(j)) for i, j in zip(data.index, data.values)]


# 实例化一个Map对象
map_ = Map(init_opts=opts.InitOpts(theme=ThemeType.PURPLE_PASSION))
# 世界地图
map_.add("门店数量", data_pair=datas, maptype="world")
map_.set_series_opts(label_opts=opts.LabelOpts(is_show=False))  # 不显示label
map_.set_global_opts(
   title_opts=opts.TitleOpts(title="星巴克门店数量在全球分布", pos_left='40%', pos_top='10'),  # 调整title位置
   legend_opts=opts.LegendOpts(is_show=False),
   visualmap_opts=opts.VisualMapOpts(max_=13608, min_=1, is_piecewise=True,
   pieces=[{"max": 9, "min": 1, "label": "1-9", "color": "#00FFFF"},    # 分段 添加图例注释和颜色
     {"max": 99, "min": 10, "label": "10-99", "color": "#A52A2A"},
     {"max": 499, "min": 100, "label": "100-499", "color": "#0000FF	"},
     {"max": 999, "min": 500, "label": "500-999", "color": "#FF00FF"},
     {"max": 2000, "min": 1000, "label": "1000-2000", "color": "#228B22"},
     {"max": 3000, "min": 2000, "label": "2000-3000", "color": "#FF0000"},
     {"max": 20000, "min": 10000, "label": ">=10000", "color": "#FFD700"}
       ])
   )

# 渲染在网页上
map_.render('星巴克门店在全球的分布.html')

运行效果如下:

一文带你掌握Pyecharts地理数据可视化的方法

2. 国家地图

涟漪散点图

利用 china.csv 中的数据,首先计算每个城市(City)对应的门店数量,然后使用 pyecharts 包内 Geo 模块绘制星巴克门面店在中国各城市的数量分布的涟漪散点地图。

import pandas as pd
from pyecharts.globals import ThemeType, CurrentConfig, GeoType
from pyecharts import options as opts
from pyecharts.charts import Geo

CurrentConfig.ONLINE_HOST = 'D:/python/pyecharts-assets-master/assets/'
# pandas读取csv文件数据
df = pd.read_csv("china.csv")['City']
data = df.value_counts()

datas = [(i, int(j)) for i, j in zip(data.index, data.values)]
print(datas)

geo = Geo(init_opts=opts.InitOpts(width='1000px', height='600px', theme=ThemeType.DARK))
geo.add_schema(maptype='china', label_opts=opts.LabelOpts(is_show=True))  # 显示label 省名
geo.add('门店数量', data_pair=datas, type_=GeoType.EFFECT_SCATTER, symbol_size=8)
geo.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
geo.set_global_opts(title_opts=opts.TitleOpts(title='星巴克门店在中国的分布'),
          visualmap_opts=opts.VisualMapOpts(max_=550, is_piecewise=True,
          pieces=[{"max": 50, "min": 0, "label": "0-50", "color": "#708090"},    # 分段 添加图例注释 和颜色
               {"max": 100, "min": 51, "label": "51-100", "color": "#00FFFF"},
               {"max": 200, "min": 101, "label": "101-200", "color": "#00008B"},
               {"max": 300, "min": 201, "label": "201-300", "color": "#8B008B"},
               {"max": 600, "min": 500, "label": "500-600", "color": "#FF0000"},
                 ])
          )

geo.render("星巴克门店在中国的分布.html")

运行效果如下:

一文带你掌握Pyecharts地理数据可视化的方法

动态轨迹图

# -*- coding: UTF-8 -*-
"""
@File  :demo3.py
@Author :叶庭云
@CSDN  :https://yetingyun.blog.csdn.net/
"""
from pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.globals import ChartType, SymbolType, CurrentConfig, ThemeType

CurrentConfig.ONLINE_HOST = 'D:/python/pyecharts-assets-master/assets/'
# 链式调用
c = (
  Geo()
  .add_schema(
    maptype="china",
    itemstyle_opts=opts.ItemStyleOpts(color="#323c48", border_color="#111"),
    label_opts=opts.LabelOpts(is_show=True)
  )
  .add(
    "",
    [("广州", 55), ("北京", 66), ("杭州", 77), ("重庆", 88), ('成都', 100), ('海口', 80)],
    type_=ChartType.EFFECT_SCATTER,
    color="white",
  )
  .add(
    "",
    [("广州", "上海"), ("广州", "北京"), ("广州", "杭州"), ("广州", "重庆"),
     ('成都', '海口'), ('海口', '北京'), ('海口', '重庆'), ('重庆', '上海')
     ],
    type_=ChartType.LINES,
    effect_opts=opts.EffectOpts(
      symbol=SymbolType.ARROW, symbol_size=6, color="blue" # 轨迹线蓝色
    ),
    linestyle_opts=opts.LineStyleOpts(curve=0.2), # 轨迹线弯曲度
  )
  .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
  .set_global_opts(title_opts=opts.TitleOpts(title="动态轨迹图"))
  .render("geo_lines_background.html")
)

运行效果如下:

一文带你掌握Pyecharts地理数据可视化的方法

3. 省市地图

热力图

# -*- coding: UTF-8 -*-
"""
@File  :demo4.py
@Author :叶庭云
@CSDN  :https://yetingyun.blog.csdn.net/
"""
from pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.faker import Faker
from pyecharts.globals import GeoType, CurrentConfig

CurrentConfig.ONLINE_HOST = 'D:/python/pyecharts-assets-master/assets/'

c = (
  Geo()
  .add_schema(maptype="广东", label_opts=opts.LabelOpts(is_show=True))
  .add(
    "热力图",
    [list(z) for z in zip(Faker.guangdong_city, Faker.values())],
    type_=GeoType.HEATMAP,
  )
  .set_series_opts(label_opts=opts.LabelOpts(is_show=True))
  .set_global_opts(
    visualmap_opts=opts.VisualMapOpts(), title_opts=opts.TitleOpts(title="Geo-广东地图")
  )
  .render("geo_guangdong.html")
)

运行效果如下:

一文带你掌握Pyecharts地理数据可视化的方法

地图上批量添加经纬度数据

数据来源于美团网成都地区酒店信息,利用其中酒店的经纬度数据,批量添加在地图上可视化。

# -*- coding: UTF-8 -*-
"""
@File  :demo5.py
@Author :叶庭云
@CSDN  :https://yetingyun.blog.csdn.net/
"""
import pandas as pd   
from pyecharts.charts import Geo  
from pyecharts import options as opts  
from pyecharts.globals import GeoType, CurrentConfig, ThemeType

CurrentConfig.ONLINE_HOST = 'D:/python/pyecharts-assets-master/assets/'
# 读取Excel数据 数据来源美团网酒店信息
df = pd.read_excel("hotel.xlsx")

# 获取 地点 经纬度信息
geo_sight_coord = {df.iloc[i]['酒店地址']: [df.iloc[i]['经度'], df.iloc[i]['纬度']] for i in range(len(df))}
data = [(df['酒店地址'][j], f"{int(df['最低价'][j])}元(最低价)") for j in range(len(df))]
# print(data)
# print(geo_sight_coord)

# 实例化Geo对象 导入成都地图
g = Geo(init_opts=opts.InitOpts(theme=ThemeType.PURPLE_PASSION, width="1000px", height="600px"))
g.add_schema(maptype="成都")

for k, v in list(geo_sight_coord.items()):
  # 添加地址、经纬度数据
  g.add_coordinate(k, v[0], v[1])

# 生成涟漪散点图
g.add("", data_pair=data, type_=GeoType.EFFECT_SCATTER, symbol_size=6)
g.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
g.set_global_opts(title_opts=opts.TitleOpts(title="成都-酒店地址分布"))
g.render("酒店地址分布.html")

运行效果如下:

一文带你掌握Pyecharts地理数据可视化的方法

到此这篇关于一文带你掌握Pyecharts地理数据可视化的方法的文章就介绍到这了,更多相关Pyecharts地理数据可视化内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python通过scapy获取局域网所有主机mac地址示例
May 04 Python
Python中asyncore的用法实例
Sep 29 Python
Python中函数的多种格式和使用实例及小技巧
Apr 13 Python
python中常用检测字符串相关函数汇总
Apr 15 Python
怎么使用pipenv管理你的python项目
Mar 12 Python
python 实现在txt指定行追加文本的方法
Apr 29 Python
python3将视频流保存为本地视频文件
Jun 20 Python
Python 网络编程之TCP客户端/服务端功能示例【基于socket套接字】
Oct 12 Python
tensorflow 只恢复部分模型参数的实例
Jan 06 Python
PyTorch加载预训练模型实例(pretrained)
Jan 17 Python
python解析xml文件方式(解析、更新、写入)
Mar 05 Python
Python爬虫入门教程01之爬取豆瓣Top电影
Jan 24 Python
解决pycharm不能自动保存在远程linux中的问题
Feb 06 #Python
Python第三方库安装缓慢的解决方法
Feb 06 #Python
python中threading和queue库实现多线程编程
Feb 06 #Python
Python3爬虫ChromeDriver的安装实例
Feb 06 #Python
解决pycharm修改代码后第一次运行不生效的问题
Feb 06 #Python
Python tkinter之ComboBox(下拉框)的使用简介
Feb 05 #Python
python批量提取图片信息并保存的实现
Feb 05 #Python
You might like
域名和cookie问题(域名后缀)
2012/10/10 PHP
php使用codebase生成随机数
2014/03/25 PHP
PHP函数shuffle()取数组若干个随机元素的方法分析
2016/04/02 PHP
PHP微信H5支付开发实例
2018/07/25 PHP
php查看一个变量的占用内存的实例代码
2020/03/29 PHP
js报错 Object doesn't support this property or method的原因分析
2011/03/31 Javascript
javascript的数据类型、字面量、变量介绍
2012/05/23 Javascript
jquery实现的随机多彩tag标签随机颜色和字号大小效果
2014/03/27 Javascript
javascript Deferred和递归次数限制实例
2014/10/21 Javascript
JavaScript常用脚本汇总(一)
2015/03/04 Javascript
nodejs实现获取当前url地址及url各种参数值
2015/06/25 NodeJs
使用impress.js制作幻灯片
2015/09/09 Javascript
Bootstrap CSS布局之代码
2016/12/17 Javascript
详解Nodejs基于mongoose模块的增删改查的操作
2016/12/21 NodeJs
详解Vue2 无限级分类(添加,删除,修改)
2017/03/07 Javascript
lhgcalendar时间插件限制只能选择三个月的实现方法
2017/07/03 Javascript
纯js实现图片匀速淡入淡出效果
2017/08/22 Javascript
jQuery中.attr()和.data()的区别分析
2017/09/03 jQuery
vue elementUI tree树形控件获取父节点ID的实例
2018/09/12 Javascript
vue实现路由切换改变title功能
2019/05/28 Javascript
Python中的localtime()方法使用详解
2015/05/22 Python
Django基础之Model操作步骤(介绍)
2017/05/27 Python
matplotlib subplots 调整子图间矩的实例
2018/05/25 Python
pycharm运行程序时在Python console窗口中运行的方法
2018/12/03 Python
对python实现模板生成脚本的方法详解
2019/01/30 Python
django fernet fields字段加密实践详解
2019/08/12 Python
Python使用grequests(gevent+requests)并发发送请求过程解析
2019/09/25 Python
python3连接mysql获取ansible动态inventory脚本
2020/01/19 Python
python生成word合同的实例方法
2021/01/12 Python
迪士尼英国官方商店:shopDisney UK
2019/09/21 全球购物
商务英语大学生职业生涯规划书范文
2014/01/01 职场文书
植树节口号
2014/06/21 职场文书
2014党的群众路线教育实践活动总结材料
2014/10/31 职场文书
三峡大坝导游词
2015/01/31 职场文书
幼儿园大班教师个人工作总结
2015/02/05 职场文书
法律讲堂观后感
2015/06/11 职场文书