一文带你掌握Pyecharts地理数据可视化的方法


Posted in Python onFebruary 06, 2021

本文主要介绍了Pyecharts地理数据可视化,分享给大家,具体如下:

一文带你掌握Pyecharts地理数据可视化的方法

一、Pyecharts简介和安装

1. 简介

Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。

  • 简洁的 API 设计,使用如丝滑般流畅,支持链式调用
  • 囊括了 30+ 种常见图表,应有尽有
  • 支持主流 Notebook 环境,Jupyter Notebook 和 JupyterLab
  • 可轻松集成至 Flask,Sanic,Django 等主流 Web 框架
  • 高度灵活的配置项,可轻松搭配出精美的图表
  • 详细的文档和示例,帮助开发者更快的上手项目
  • 多达 400+ 地图文件,并且支持原生百度地图,为地理数据可视化提供强有力的支持

pyecharts版本v0.5.x 和 v1 间不兼容,v1 是一个全新的版本,语法也有很大不同。

2. 安装

安装pyecharts

pip install pyecharts -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
import pyecharts
print(pyecharts.__version__)     # 查看当前pyecharts版本

安装相关的地图扩展包

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-countries-pypkg  		# 全球国家地图
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-china-provinces-pypkg  # 中国省级地图
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-china-cities-pypkg   # 中国市级地图
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-china-counties-pypkg  # 中国县区级地图

二、地图可视化

1. 世界地图

利用 Starbucks.csv 中的数据,首先计算每个国家(Country)对应的门店数量,然后使用世界地图可视化展示星巴克门面店在全球的数量分布。

# -*- coding: UTF-8 -*-
"""
@File  :demo1.py
@Author :叶庭云
@CSDN  :https://yetingyun.blog.csdn.net/
"""
import pandas as pd
from pyecharts.charts import Map
from pyecharts import options as opts
from pyecharts.globals import ThemeType, CurrentConfig

CurrentConfig.ONLINE_HOST = 'D:/python/pyecharts-assets-master/assets/'

# pandas读取csv文件里的数据
df = pd.read_csv("Starbucks.csv")['Country']
# 统计各个地区星巴克门店数量
data = df.value_counts()
datas = [(i, int(j)) for i, j in zip(data.index, data.values)]


# 实例化一个Map对象
map_ = Map(init_opts=opts.InitOpts(theme=ThemeType.PURPLE_PASSION))
# 世界地图
map_.add("门店数量", data_pair=datas, maptype="world")
map_.set_series_opts(label_opts=opts.LabelOpts(is_show=False))  # 不显示label
map_.set_global_opts(
   title_opts=opts.TitleOpts(title="星巴克门店数量在全球分布", pos_left='40%', pos_top='10'),  # 调整title位置
   legend_opts=opts.LegendOpts(is_show=False),
   visualmap_opts=opts.VisualMapOpts(max_=13608, min_=1, is_piecewise=True,
   pieces=[{"max": 9, "min": 1, "label": "1-9", "color": "#00FFFF"},    # 分段 添加图例注释和颜色
     {"max": 99, "min": 10, "label": "10-99", "color": "#A52A2A"},
     {"max": 499, "min": 100, "label": "100-499", "color": "#0000FF	"},
     {"max": 999, "min": 500, "label": "500-999", "color": "#FF00FF"},
     {"max": 2000, "min": 1000, "label": "1000-2000", "color": "#228B22"},
     {"max": 3000, "min": 2000, "label": "2000-3000", "color": "#FF0000"},
     {"max": 20000, "min": 10000, "label": ">=10000", "color": "#FFD700"}
       ])
   )

# 渲染在网页上
map_.render('星巴克门店在全球的分布.html')

运行效果如下:

一文带你掌握Pyecharts地理数据可视化的方法

2. 国家地图

涟漪散点图

利用 china.csv 中的数据,首先计算每个城市(City)对应的门店数量,然后使用 pyecharts 包内 Geo 模块绘制星巴克门面店在中国各城市的数量分布的涟漪散点地图。

import pandas as pd
from pyecharts.globals import ThemeType, CurrentConfig, GeoType
from pyecharts import options as opts
from pyecharts.charts import Geo

CurrentConfig.ONLINE_HOST = 'D:/python/pyecharts-assets-master/assets/'
# pandas读取csv文件数据
df = pd.read_csv("china.csv")['City']
data = df.value_counts()

datas = [(i, int(j)) for i, j in zip(data.index, data.values)]
print(datas)

geo = Geo(init_opts=opts.InitOpts(width='1000px', height='600px', theme=ThemeType.DARK))
geo.add_schema(maptype='china', label_opts=opts.LabelOpts(is_show=True))  # 显示label 省名
geo.add('门店数量', data_pair=datas, type_=GeoType.EFFECT_SCATTER, symbol_size=8)
geo.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
geo.set_global_opts(title_opts=opts.TitleOpts(title='星巴克门店在中国的分布'),
          visualmap_opts=opts.VisualMapOpts(max_=550, is_piecewise=True,
          pieces=[{"max": 50, "min": 0, "label": "0-50", "color": "#708090"},    # 分段 添加图例注释 和颜色
               {"max": 100, "min": 51, "label": "51-100", "color": "#00FFFF"},
               {"max": 200, "min": 101, "label": "101-200", "color": "#00008B"},
               {"max": 300, "min": 201, "label": "201-300", "color": "#8B008B"},
               {"max": 600, "min": 500, "label": "500-600", "color": "#FF0000"},
                 ])
          )

geo.render("星巴克门店在中国的分布.html")

运行效果如下:

一文带你掌握Pyecharts地理数据可视化的方法

动态轨迹图

# -*- coding: UTF-8 -*-
"""
@File  :demo3.py
@Author :叶庭云
@CSDN  :https://yetingyun.blog.csdn.net/
"""
from pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.globals import ChartType, SymbolType, CurrentConfig, ThemeType

CurrentConfig.ONLINE_HOST = 'D:/python/pyecharts-assets-master/assets/'
# 链式调用
c = (
  Geo()
  .add_schema(
    maptype="china",
    itemstyle_opts=opts.ItemStyleOpts(color="#323c48", border_color="#111"),
    label_opts=opts.LabelOpts(is_show=True)
  )
  .add(
    "",
    [("广州", 55), ("北京", 66), ("杭州", 77), ("重庆", 88), ('成都', 100), ('海口', 80)],
    type_=ChartType.EFFECT_SCATTER,
    color="white",
  )
  .add(
    "",
    [("广州", "上海"), ("广州", "北京"), ("广州", "杭州"), ("广州", "重庆"),
     ('成都', '海口'), ('海口', '北京'), ('海口', '重庆'), ('重庆', '上海')
     ],
    type_=ChartType.LINES,
    effect_opts=opts.EffectOpts(
      symbol=SymbolType.ARROW, symbol_size=6, color="blue" # 轨迹线蓝色
    ),
    linestyle_opts=opts.LineStyleOpts(curve=0.2), # 轨迹线弯曲度
  )
  .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
  .set_global_opts(title_opts=opts.TitleOpts(title="动态轨迹图"))
  .render("geo_lines_background.html")
)

运行效果如下:

一文带你掌握Pyecharts地理数据可视化的方法

3. 省市地图

热力图

# -*- coding: UTF-8 -*-
"""
@File  :demo4.py
@Author :叶庭云
@CSDN  :https://yetingyun.blog.csdn.net/
"""
from pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.faker import Faker
from pyecharts.globals import GeoType, CurrentConfig

CurrentConfig.ONLINE_HOST = 'D:/python/pyecharts-assets-master/assets/'

c = (
  Geo()
  .add_schema(maptype="广东", label_opts=opts.LabelOpts(is_show=True))
  .add(
    "热力图",
    [list(z) for z in zip(Faker.guangdong_city, Faker.values())],
    type_=GeoType.HEATMAP,
  )
  .set_series_opts(label_opts=opts.LabelOpts(is_show=True))
  .set_global_opts(
    visualmap_opts=opts.VisualMapOpts(), title_opts=opts.TitleOpts(title="Geo-广东地图")
  )
  .render("geo_guangdong.html")
)

运行效果如下:

一文带你掌握Pyecharts地理数据可视化的方法

地图上批量添加经纬度数据

数据来源于美团网成都地区酒店信息,利用其中酒店的经纬度数据,批量添加在地图上可视化。

# -*- coding: UTF-8 -*-
"""
@File  :demo5.py
@Author :叶庭云
@CSDN  :https://yetingyun.blog.csdn.net/
"""
import pandas as pd   
from pyecharts.charts import Geo  
from pyecharts import options as opts  
from pyecharts.globals import GeoType, CurrentConfig, ThemeType

CurrentConfig.ONLINE_HOST = 'D:/python/pyecharts-assets-master/assets/'
# 读取Excel数据 数据来源美团网酒店信息
df = pd.read_excel("hotel.xlsx")

# 获取 地点 经纬度信息
geo_sight_coord = {df.iloc[i]['酒店地址']: [df.iloc[i]['经度'], df.iloc[i]['纬度']] for i in range(len(df))}
data = [(df['酒店地址'][j], f"{int(df['最低价'][j])}元(最低价)") for j in range(len(df))]
# print(data)
# print(geo_sight_coord)

# 实例化Geo对象 导入成都地图
g = Geo(init_opts=opts.InitOpts(theme=ThemeType.PURPLE_PASSION, width="1000px", height="600px"))
g.add_schema(maptype="成都")

for k, v in list(geo_sight_coord.items()):
  # 添加地址、经纬度数据
  g.add_coordinate(k, v[0], v[1])

# 生成涟漪散点图
g.add("", data_pair=data, type_=GeoType.EFFECT_SCATTER, symbol_size=6)
g.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
g.set_global_opts(title_opts=opts.TitleOpts(title="成都-酒店地址分布"))
g.render("酒店地址分布.html")

运行效果如下:

一文带你掌握Pyecharts地理数据可视化的方法

到此这篇关于一文带你掌握Pyecharts地理数据可视化的方法的文章就介绍到这了,更多相关Pyecharts地理数据可视化内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python操作MySQL数据库的方法分享
May 29 Python
跟老齐学Python之永远强大的函数
Sep 14 Python
python中的装饰器详解
Apr 13 Python
python创建一个最简单http webserver服务器的方法
May 08 Python
Python 3.x 连接数据库示例(pymysql 方式)
Jan 19 Python
儿童编程python入门
May 08 Python
Python实现的绘制三维双螺旋线图形功能示例
Jun 23 Python
python基于TCP实现的文件下载器功能案例
Dec 10 Python
Python测试线程应用程序过程解析
Dec 31 Python
推荐8款常用的Python GUI图形界面开发框架
Feb 23 Python
Python 解决火狐浏览器不弹出下载框直接下载的问题
Mar 09 Python
Pyhton爬虫知识之正则表达式详解
Apr 01 Python
解决pycharm不能自动保存在远程linux中的问题
Feb 06 #Python
Python第三方库安装缓慢的解决方法
Feb 06 #Python
python中threading和queue库实现多线程编程
Feb 06 #Python
Python3爬虫ChromeDriver的安装实例
Feb 06 #Python
解决pycharm修改代码后第一次运行不生效的问题
Feb 06 #Python
Python tkinter之ComboBox(下拉框)的使用简介
Feb 05 #Python
python批量提取图片信息并保存的实现
Feb 05 #Python
You might like
php地址引用(php地址引用的效率问题)
2012/03/23 PHP
ThinkPHP中ajax使用实例教程
2014/08/22 PHP
Centos下升级php5.2到php5.4全记录(编译安装)
2015/04/03 PHP
thinkPHP实现MemCache分布式缓存功能
2016/03/23 PHP
jQuery 操作下拉列表框实现代码
2010/02/22 Javascript
javascript数组去重3种方法的性能测试与比较
2013/03/26 Javascript
使用Nodejs开发微信公众号后台服务实例
2014/09/03 NodeJs
jQuery简单tab切换效果实现方法
2015/04/08 Javascript
JS数组合并push与concat区别分析
2015/12/17 Javascript
JavaScript中关联原型链属性特性
2016/02/13 Javascript
理解js回收机制通俗易懂版
2016/02/29 Javascript
如何提高数据访问速度
2016/12/26 Javascript
js 图片转base64的方式(两种)
2018/04/24 Javascript
安装vue-cli的简易过程
2018/05/22 Javascript
使用vuex解决刷新页面state数据消失的问题记录
2019/05/08 Javascript
JavaScript中如何调用Java方法
2020/09/16 Javascript
vue3中轻松实现switch功能组件的全过程
2021/01/07 Vue.js
python聊天程序实例代码分享
2013/11/18 Python
Python3连接MySQL(pymysql)模拟转账实现代码
2016/05/24 Python
最大K个数问题的Python版解法总结
2016/06/16 Python
Python把csv数据写入list和字典类型的变量脚本方法
2018/06/15 Python
Pandas读取并修改excel的示例代码
2019/02/17 Python
我用Python抓取了7000 多本电子书案例详解
2019/03/25 Python
Django用户认证系统如何实现自定义
2020/11/12 Python
python 实现Requests发送带cookies的请求
2021/02/08 Python
解析html5 canvas实现背景鼠标连线动态效果代码
2019/06/17 HTML / CSS
欧舒丹英国官网:购买欧舒丹护手霜等明星产品
2017/01/17 全球购物
River Island美国官网:英国高街时尚品牌
2018/09/04 全球购物
网络工程师个人的自我评价范文
2013/10/01 职场文书
三八节主持词
2014/03/17 职场文书
槐乡的孩子教学反思
2014/04/27 职场文书
音乐之声观后感
2015/06/04 职场文书
小英雄雨来观后感
2015/06/09 职场文书
浅谈移动端中的视口(viewport)的具体使用
2021/04/13 HTML / CSS
Django drf请求模块源码解析
2021/06/08 Python
浅谈自定义校验注解ConstraintValidator
2021/06/30 Java/Android