对python中的高效迭代器函数详解


Posted in Python onOctober 18, 2018

python中内置的库中有个itertools,可以满足我们在编程中绝大多数需要迭代的场合,当然也可以自己造轮子,但是有现成的好用的轮子不妨也学习一下,看哪个用的顺手~

首先还是要先import一下:

#import itertools
from itertools import * #最好使用时用上面那个,不过下面的是为了演示比较
  常用的,所以就直接全部导入了

一.无限迭代器:

对python中的高效迭代器函数详解

由于这些都是无限迭代器,因此使用的时候都要设置终止条件,不然会一直运行下去,也就不是我们想要的结果了。

1、count()

可以设置两个参数,第一个参数为起始点,且包含在内,第二个参数为步长,如果不设置第二个参数则默认步长为1

for x in count(10,20):
 if x < 200:
 print x
def count(start=0, step=1):
 # count(10) --> 10 11 12 13 14 ...
 # count(2.5, 0.5) -> 2.5 3.0 3.5 ...
 n = start
 while True:
 yield n
 n += step

2、cycle()

可以设置一个参数,且只接受可以迭代的参数,如列表,元组,字符串。。。,该函数会对可迭代的所有元素进行循环:

for i,x in enumerate(cycle('abcd')):
 if i < 5:
 print x
def cycle(iterable):
 # cycle('ABCD') --> A B C D A B C D A B C D ...
 saved = []
 for element in iterable:
 yield element
 saved.append(element)
 while saved:
 for element in saved:
  yield element

3、repeat()

可以设置两个参数,其中第一个参数要求可迭代,第二个参数为重复次数,第二个参数如不设置则无限循环,一般来说使用时都会设置第二个参数,用来满足预期重复次数后终止:

#注意如果不设置第二个参数notebook运行可能会宕机
for x in repeat(['a','b','c'],10):
 print x

二.有限迭代器

对python中的高效迭代器函数详解

1、chain()

可以接受不定个数个可迭代参数,不要求可迭代参数类型相同,会返回一个列表,这个类似于list的extend,不过不同点是list的extend是对原变量进行改变不返回,而chain则是就地改变并返回:

list(chain(range(4),range(5)))

list(chain(range(4),'abc'))

list(chain(('a','b','c'),'nihao',['shijie','zhongguo']))
def chain(*iterables):
 # chain('ABC', 'DEF') --> A B C D E F
 for it in iterables:
 for element in it:
  yield element

2.compress()

第一个参数为可迭代类型,第二个参数为0和1的集合,两者长度可以不等,

这个暂时不知道可以用在哪里、

list(compress(['a','b','c','d','e'],[0,1,1,1,0,1]))
def compress(data, selectors):
 # compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F
 return (d for d, s in izip(data, selectors) if s)

3.dropwhile()

接受两个参数,第一个参数为一个判断类似于if语句的函数,丢弃满足的项,直到第一个不满足的项出现时停止丢弃,就是

#伪代码大概是这个样子的
if condition:
 drop element
 while not condition:
 stop drop
list(dropwhile(lambda x:x>5,range(10,0,-1)))
def dropwhile(predicate, iterable):
 # dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1
 iterable = iter(iterable)
 for x in iterable:
 if not predicate(x):
  yield x
  break
 for x in iterable:
 yield x

4.groupby

对给定可迭代集合(有重复元素)进行分组,返回的是一个元组,元组的第一个为分组的元素,第二个为分组的元素集合,还是看代码吧:

for x,y in groupby(['a','a','b','b','b','b','c','d','e','e']):
 print x
 print list(y)
 print ''

out:
 a
 ['a', 'a']

 b
 ['b', 'b', 'b', 'b']

 c
 ['c']

 d
 ['d']

 e
 ['e', 'e']
class groupby(object):
 # [k for k, g in groupby('AAAABBBCCDAABBB')] --> A B C D A B
 # [list(g) for k, g in groupby('AAAABBBCCD')] --> AAAA BBB CC D
 def __init__(self, iterable, key=None):
 if key is None:
  key = lambda x: x
 self.keyfunc = key
 self.it = iter(iterable)
 self.tgtkey = self.currkey = self.currvalue = object()
 def __iter__(self):
 return self
 def next(self):
 while self.currkey == self.tgtkey:
  self.currvalue = next(self.it) # Exit on StopIteration
  self.currkey = self.keyfunc(self.currvalue)
 self.tgtkey = self.currkey
 return (self.currkey, self._grouper(self.tgtkey))
 def _grouper(self, tgtkey):
 while self.currkey == tgtkey:
  yield self.currvalue
  self.currvalue = next(self.it) # Exit on StopIteration
  self.currkey = self.keyfunc(self.currvalue)

5.ifilter()

这个有点像是filter函数了,不过有点不同,filter返回的是一个完成后的列表,而ifilter则是一个生成器,使用的yield

#这样写只是为了更清楚看到输出,其实这么写就跟filter用法一样了,体现不到ifilter的优越之处了
list(ifilter(lambda x:x%2,range(10)))

6.ifilterfalse()

这个跟ifilter用法很像,只是两个是相反数的关系。

list(ifilterfalse(lambda x:x%2,range(10)))

7.islice()

接受三个参数,可迭代参数,起始切片点,结束切片点,最少给定两个参数,当只有两个参数为默认第二个参数为结束切片点:

In: list(islice(range(10),2,None))
Out: [2, 3, 4, 5, 6, 7, 8, 9]

In: list(islice(range(10),2))
Out: [0, 1]

8.imap()

接受参数个数跟目标函数有关:

#接受两个参数时
list(imap(abs,range(-5,5)))

#接受三个参数时
list(imap(pow,range(-5,5),range(10)))

#接受四个参数时
list(imap(lambda x,y,z:x+y+z,range(10),range(10),range(10)))

9.starmap()

这个是imap的变异,即只接受两个参数,目标函数会作用在第二个参数集合中、

in: list(starmap(pow,[(1,2),(2,3)]))
out: [1, 8]

10.tee()

接受两个参数,第一个参数为可迭代类型,第二个为int,如果第二个不指定则默认为2,即重复两次,有点像是生成器repeat的生成器类型,

这个就有意思了,是双重生成器输出:

for x in list(tee('abcde',3)):
 print list(x)

11.takewhile()

这个有点跟dropwhile()很是想象,一个是丢弃,一个是拿取:

伪代码为:

if condition:
 take this element
 while not condition:
 stop take

eg:

in: list(takewhile(lambda x:x<10,(1,9,10,11,8)))
out: [1, 9]

12.izip()

这个跟imap一样,只不过imap是针对map的生成器类型,而izip是针对zip的:

list(izip('ab','cd'))

13.izip_longest

针对izip只截取最短的,这个是截取最长的,以None来填充空位:

list(izip_longest('a','abcd'))

三、组合迭代器

对python中的高效迭代器函数详解

1.product()

这个有点像是多次使用for循环,两者可以替代。

list(product(range(10),range(10)))

#本质上是这种的生成器模式
L = []
for x in range(10):
 for y in range(10):
 L.append((x,y))

2.permutations()

接受两个参数,第二个参数不设置时输出的没看出来是什么鬼,

第二个参数用来控制生成的元组的元素个数,而输出的元组中最后一个元素是打乱次序的,暂时也不知道可以用在哪

list(permutations(range(10),2))

3.combinations()

用来排列组合,抽样不放回,第二个参数为参与排列组合的个数

list(combinations('abc',2))
def combinations(iterable, r):
 # combinations('ABCD', 2) --> AB AC AD BC BD CD
 # combinations(range(4), 3) --> 012 013 023 123
 pool = tuple(iterable)
 n = len(pool)
 if r > n:
 return
 indices = range(r)
 yield tuple(pool[i] for i in indices)
 while True:
 for i in reversed(range(r)):
  if indices[i] != i + n - r:
  break
 else:
  return
 indices[i] += 1
 for j in range(i+1, r):
  indices[j] = indices[j-1] + 1
 yield tuple(pool[i] for i in indices)
def combinations(iterable, r):
 pool = tuple(iterable)
 n = len(pool)
 for indices in permutations(range(n), r):
 if sorted(indices) == list(indices):
  yield tuple(pool[i] for i in indices)

4.combinations_with_replacement()

与上一个的用法不同的是抽样是放回的

def combinations_with_replacement(iterable, r):
 # combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC
 pool = tuple(iterable)
 n = len(pool)
 if not n and r:
 return
 indices = [0] * r
 yield tuple(pool[i] for i in indices)
 while True:
 for i in reversed(range(r)):
  if indices[i] != n - 1:
  break
 else:
  return
 indices[i:] = [indices[i] + 1] * (r - i)
 yield tuple(pool[i] for i in indices)
def combinations_with_replacement(iterable, r):
 pool = tuple(iterable)
 n = len(pool)
 for indices in product(range(n), repeat=r):
 if sorted(indices) == list(indices):
  yield tuple(pool[i] for i in indices)

以上这篇对python中的高效迭代器函数详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
使用Python的Django框架实现事务交易管理的教程
Apr 20 Python
Python Socket传输文件示例
Jan 16 Python
学习Python selenium自动化网页抓取器
Jan 20 Python
python导出hive数据表的schema实例代码
Jan 22 Python
解决python中使用plot画图,图不显示的问题
Jul 04 Python
用Python将mysql数据导出成json的方法
Aug 21 Python
Django Rest framework之认证的实现代码
Dec 17 Python
python将pandas datarame保存为txt文件的实例
Feb 12 Python
在python里从协程返回一个值的示例
Feb 19 Python
基于Python+Appium实现京东双十一自动领金币功能
Oct 31 Python
手动安装python3.6的操作过程详解
Jan 13 Python
python和C/C++混合编程之使用ctypes调用 C/C++的dll
Apr 29 Python
对Python中内置异常层次结构详解
Oct 18 #Python
Python运维开发之psutil库的使用详解
Oct 18 #Python
python实现自动登录后台管理系统
Oct 18 #Python
python 对给定可迭代集合统计出现频率,并排序的方法
Oct 18 #Python
python实现简单登陆系统
Oct 18 #Python
Python字典中的键映射多个值的方法(列表或者集合)
Oct 17 #Python
python字典值排序并取出前n个key值的方法
Oct 17 #Python
You might like
自己动手做一个SQL解释器
2006/10/09 PHP
PHP 5.3新特性命名空间规则解析及高级功能
2010/03/11 PHP
ThinkPHP的模版中调用session数据的方法
2014/07/01 PHP
PHP实现视频文件上传完整实例
2014/08/28 PHP
PHP之预定义接口详解
2015/07/29 PHP
PHP自定义错误处理的方法分析
2018/12/19 PHP
几个高效,简洁的字符处理函数
2007/04/12 Javascript
javascript 导出数据到Excel(处理table中的元素)
2009/12/18 Javascript
JS无法捕获滚动条上的mouse up事件的原因猜想
2012/03/21 Javascript
Node.js插件的正确编写方式
2014/08/03 Javascript
基于jquery和svg实现超炫酷的动画特效
2014/12/09 Javascript
JS运动框架之分享侧边栏动画实例
2015/03/03 Javascript
jquery插件EasyUI中form表单提交实例分享
2016/01/11 Javascript
jquery实现页面常用的返回顶部效果
2016/03/04 Javascript
jQuery实现点击水纹波动动画
2016/04/10 Javascript
AngularJS 依赖注入详解和简单实例
2016/07/28 Javascript
JavaScript实现格式化字符串函数String.format
2016/12/16 Javascript
js 判断数据类型的几种方法
2017/01/13 Javascript
jQuery插件echarts实现的去掉X轴、Y轴和网格线效果示例【附demo源码下载】
2017/03/04 Javascript
Vue动态获取width的方法
2018/08/22 Javascript
Koa从零搭建到Api实现项目的搭建方法
2019/07/30 Javascript
vue3.0中使用element的完整步骤
2021/03/04 Vue.js
[01:07:46]完美世界DOTA2联赛循环赛 Magma vs IO BO2第二场 11.01
2020/11/02 DOTA
Python实例分享:快速查找出被挂马的文件
2014/06/08 Python
教你使用python实现微信每天给女朋友说晚安
2018/03/23 Python
使用python进行文本预处理和提取特征的实例
2018/06/05 Python
Python 新建文件夹与复制文件夹内所有内容的方法
2018/10/27 Python
python装饰器简介---这一篇也许就够了(推荐)
2019/04/01 Python
python 自定义装饰器实例详解
2019/07/20 Python
提升python处理速度原理及方法实例
2019/12/25 Python
Python利用myqr库创建自己的二维码
2020/11/24 Python
Python 的 f-string 可以连接字符串与数字的原因解析
2021/02/20 Python
HTML5 Web Database 数据库的SQL语句的使用方法
2012/12/09 HTML / CSS
体育教师工作总结的自我评价
2013/10/10 职场文书
幼儿园义卖活动方案
2014/01/17 职场文书
行政监察建议书
2014/05/19 职场文书