对python中的高效迭代器函数详解


Posted in Python onOctober 18, 2018

python中内置的库中有个itertools,可以满足我们在编程中绝大多数需要迭代的场合,当然也可以自己造轮子,但是有现成的好用的轮子不妨也学习一下,看哪个用的顺手~

首先还是要先import一下:

#import itertools
from itertools import * #最好使用时用上面那个,不过下面的是为了演示比较
  常用的,所以就直接全部导入了

一.无限迭代器:

对python中的高效迭代器函数详解

由于这些都是无限迭代器,因此使用的时候都要设置终止条件,不然会一直运行下去,也就不是我们想要的结果了。

1、count()

可以设置两个参数,第一个参数为起始点,且包含在内,第二个参数为步长,如果不设置第二个参数则默认步长为1

for x in count(10,20):
 if x < 200:
 print x
def count(start=0, step=1):
 # count(10) --> 10 11 12 13 14 ...
 # count(2.5, 0.5) -> 2.5 3.0 3.5 ...
 n = start
 while True:
 yield n
 n += step

2、cycle()

可以设置一个参数,且只接受可以迭代的参数,如列表,元组,字符串。。。,该函数会对可迭代的所有元素进行循环:

for i,x in enumerate(cycle('abcd')):
 if i < 5:
 print x
def cycle(iterable):
 # cycle('ABCD') --> A B C D A B C D A B C D ...
 saved = []
 for element in iterable:
 yield element
 saved.append(element)
 while saved:
 for element in saved:
  yield element

3、repeat()

可以设置两个参数,其中第一个参数要求可迭代,第二个参数为重复次数,第二个参数如不设置则无限循环,一般来说使用时都会设置第二个参数,用来满足预期重复次数后终止:

#注意如果不设置第二个参数notebook运行可能会宕机
for x in repeat(['a','b','c'],10):
 print x

二.有限迭代器

对python中的高效迭代器函数详解

1、chain()

可以接受不定个数个可迭代参数,不要求可迭代参数类型相同,会返回一个列表,这个类似于list的extend,不过不同点是list的extend是对原变量进行改变不返回,而chain则是就地改变并返回:

list(chain(range(4),range(5)))

list(chain(range(4),'abc'))

list(chain(('a','b','c'),'nihao',['shijie','zhongguo']))
def chain(*iterables):
 # chain('ABC', 'DEF') --> A B C D E F
 for it in iterables:
 for element in it:
  yield element

2.compress()

第一个参数为可迭代类型,第二个参数为0和1的集合,两者长度可以不等,

这个暂时不知道可以用在哪里、

list(compress(['a','b','c','d','e'],[0,1,1,1,0,1]))
def compress(data, selectors):
 # compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F
 return (d for d, s in izip(data, selectors) if s)

3.dropwhile()

接受两个参数,第一个参数为一个判断类似于if语句的函数,丢弃满足的项,直到第一个不满足的项出现时停止丢弃,就是

#伪代码大概是这个样子的
if condition:
 drop element
 while not condition:
 stop drop
list(dropwhile(lambda x:x>5,range(10,0,-1)))
def dropwhile(predicate, iterable):
 # dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1
 iterable = iter(iterable)
 for x in iterable:
 if not predicate(x):
  yield x
  break
 for x in iterable:
 yield x

4.groupby

对给定可迭代集合(有重复元素)进行分组,返回的是一个元组,元组的第一个为分组的元素,第二个为分组的元素集合,还是看代码吧:

for x,y in groupby(['a','a','b','b','b','b','c','d','e','e']):
 print x
 print list(y)
 print ''

out:
 a
 ['a', 'a']

 b
 ['b', 'b', 'b', 'b']

 c
 ['c']

 d
 ['d']

 e
 ['e', 'e']
class groupby(object):
 # [k for k, g in groupby('AAAABBBCCDAABBB')] --> A B C D A B
 # [list(g) for k, g in groupby('AAAABBBCCD')] --> AAAA BBB CC D
 def __init__(self, iterable, key=None):
 if key is None:
  key = lambda x: x
 self.keyfunc = key
 self.it = iter(iterable)
 self.tgtkey = self.currkey = self.currvalue = object()
 def __iter__(self):
 return self
 def next(self):
 while self.currkey == self.tgtkey:
  self.currvalue = next(self.it) # Exit on StopIteration
  self.currkey = self.keyfunc(self.currvalue)
 self.tgtkey = self.currkey
 return (self.currkey, self._grouper(self.tgtkey))
 def _grouper(self, tgtkey):
 while self.currkey == tgtkey:
  yield self.currvalue
  self.currvalue = next(self.it) # Exit on StopIteration
  self.currkey = self.keyfunc(self.currvalue)

5.ifilter()

这个有点像是filter函数了,不过有点不同,filter返回的是一个完成后的列表,而ifilter则是一个生成器,使用的yield

#这样写只是为了更清楚看到输出,其实这么写就跟filter用法一样了,体现不到ifilter的优越之处了
list(ifilter(lambda x:x%2,range(10)))

6.ifilterfalse()

这个跟ifilter用法很像,只是两个是相反数的关系。

list(ifilterfalse(lambda x:x%2,range(10)))

7.islice()

接受三个参数,可迭代参数,起始切片点,结束切片点,最少给定两个参数,当只有两个参数为默认第二个参数为结束切片点:

In: list(islice(range(10),2,None))
Out: [2, 3, 4, 5, 6, 7, 8, 9]

In: list(islice(range(10),2))
Out: [0, 1]

8.imap()

接受参数个数跟目标函数有关:

#接受两个参数时
list(imap(abs,range(-5,5)))

#接受三个参数时
list(imap(pow,range(-5,5),range(10)))

#接受四个参数时
list(imap(lambda x,y,z:x+y+z,range(10),range(10),range(10)))

9.starmap()

这个是imap的变异,即只接受两个参数,目标函数会作用在第二个参数集合中、

in: list(starmap(pow,[(1,2),(2,3)]))
out: [1, 8]

10.tee()

接受两个参数,第一个参数为可迭代类型,第二个为int,如果第二个不指定则默认为2,即重复两次,有点像是生成器repeat的生成器类型,

这个就有意思了,是双重生成器输出:

for x in list(tee('abcde',3)):
 print list(x)

11.takewhile()

这个有点跟dropwhile()很是想象,一个是丢弃,一个是拿取:

伪代码为:

if condition:
 take this element
 while not condition:
 stop take

eg:

in: list(takewhile(lambda x:x<10,(1,9,10,11,8)))
out: [1, 9]

12.izip()

这个跟imap一样,只不过imap是针对map的生成器类型,而izip是针对zip的:

list(izip('ab','cd'))

13.izip_longest

针对izip只截取最短的,这个是截取最长的,以None来填充空位:

list(izip_longest('a','abcd'))

三、组合迭代器

对python中的高效迭代器函数详解

1.product()

这个有点像是多次使用for循环,两者可以替代。

list(product(range(10),range(10)))

#本质上是这种的生成器模式
L = []
for x in range(10):
 for y in range(10):
 L.append((x,y))

2.permutations()

接受两个参数,第二个参数不设置时输出的没看出来是什么鬼,

第二个参数用来控制生成的元组的元素个数,而输出的元组中最后一个元素是打乱次序的,暂时也不知道可以用在哪

list(permutations(range(10),2))

3.combinations()

用来排列组合,抽样不放回,第二个参数为参与排列组合的个数

list(combinations('abc',2))
def combinations(iterable, r):
 # combinations('ABCD', 2) --> AB AC AD BC BD CD
 # combinations(range(4), 3) --> 012 013 023 123
 pool = tuple(iterable)
 n = len(pool)
 if r > n:
 return
 indices = range(r)
 yield tuple(pool[i] for i in indices)
 while True:
 for i in reversed(range(r)):
  if indices[i] != i + n - r:
  break
 else:
  return
 indices[i] += 1
 for j in range(i+1, r):
  indices[j] = indices[j-1] + 1
 yield tuple(pool[i] for i in indices)
def combinations(iterable, r):
 pool = tuple(iterable)
 n = len(pool)
 for indices in permutations(range(n), r):
 if sorted(indices) == list(indices):
  yield tuple(pool[i] for i in indices)

4.combinations_with_replacement()

与上一个的用法不同的是抽样是放回的

def combinations_with_replacement(iterable, r):
 # combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC
 pool = tuple(iterable)
 n = len(pool)
 if not n and r:
 return
 indices = [0] * r
 yield tuple(pool[i] for i in indices)
 while True:
 for i in reversed(range(r)):
  if indices[i] != n - 1:
  break
 else:
  return
 indices[i:] = [indices[i] + 1] * (r - i)
 yield tuple(pool[i] for i in indices)
def combinations_with_replacement(iterable, r):
 pool = tuple(iterable)
 n = len(pool)
 for indices in product(range(n), repeat=r):
 if sorted(indices) == list(indices):
  yield tuple(pool[i] for i in indices)

以上这篇对python中的高效迭代器函数详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python发送邮件接收邮件示例分享
Jan 21 Python
酷! 程序员用Python带你玩转冲顶大会
Jan 17 Python
python将视频转换为全字符视频
Apr 26 Python
python利用tkinter实现屏保
Jul 30 Python
Python 实现一个手机号码获取妹子名字的功能
Sep 25 Python
python getpass模块用法及实例详解
Oct 07 Python
基于python 取余问题(%)详解
Jun 03 Python
Python web框架(django,flask)实现mysql数据库读写分离的示例
Nov 18 Python
Python 求向量的余弦值操作
Mar 04 Python
python基础之while循环语句的使用
Apr 20 Python
python使用PySimpleGUI设置进度条及控件使用
Jun 10 Python
据Python爬虫不靠谱预测可知今年双十一销售额将超过6000亿元
Nov 11 Python
对Python中内置异常层次结构详解
Oct 18 #Python
Python运维开发之psutil库的使用详解
Oct 18 #Python
python实现自动登录后台管理系统
Oct 18 #Python
python 对给定可迭代集合统计出现频率,并排序的方法
Oct 18 #Python
python实现简单登陆系统
Oct 18 #Python
Python字典中的键映射多个值的方法(列表或者集合)
Oct 17 #Python
python字典值排序并取出前n个key值的方法
Oct 17 #Python
You might like
weiphp微信公众平台授权设置
2016/01/04 PHP
php生成二维码图片方法汇总
2016/12/17 PHP
javascript各种复制代码收集
2008/09/20 Javascript
jQuery Validation实例代码 让验证变得如此容易
2010/10/18 Javascript
HTML上传控件取消选择
2013/03/06 Javascript
JS实现悬浮移动窗口(悬浮广告)的特效
2013/03/12 Javascript
解决Jquery向页面append新元素之后事件的绑定问题
2015/03/16 Javascript
js拆分字符串并将分割的数据放到数组中的方法
2015/05/06 Javascript
Javascript实现数组中的元素上下移动
2017/04/28 Javascript
JavaScript实现左侧菜单效果
2017/12/14 Javascript
基于webpack4搭建的react项目框架的方法
2018/06/30 Javascript
JavaScript实现正则去除a标签并保留内容的方法【测试可用】
2018/07/18 Javascript
JavaScript引用类型Object常见用法实例分析
2018/08/08 Javascript
Vue实现按钮旋转和移动位置的实例代码
2018/08/09 Javascript
layer.close()关闭进度条和Iframe窗的方法
2018/08/17 Javascript
JS/HTML5游戏常用算法之路径搜索算法 A*寻路算法完整实例
2018/12/14 Javascript
微信小程序实现卡片层叠滑动效果
2019/06/21 Javascript
微信小程序 可搜索的地址选择实现详解
2019/08/28 Javascript
微信小程序自定义菜单切换栏tabbar组件代码实例
2019/12/30 Javascript
vue中配置scss全局变量的步骤
2020/12/28 Vue.js
[55:02]2014 DOTA2国际邀请赛中国区预选赛 HGT VS Orenda
2014/05/21 DOTA
python使用socket向客户端发送数据的方法
2015/04/29 Python
python中import学习备忘笔记
2017/01/24 Python
Python实现求解一元二次方程的方法示例
2018/06/20 Python
python itchat实现调用微信接口的第三方模块方法
2019/06/11 Python
python爬虫利用selenium实现自动翻页爬取某鱼数据的思路详解
2020/12/22 Python
html5 自定义播放器核心代码
2013/12/20 HTML / CSS
详解html5 canvas常用api总结(二)--绘图API
2016/12/14 HTML / CSS
ETO男装官方网店:ETO Jeans
2019/02/28 全球购物
意大利买卖二手奢侈品网站:LAMPOO
2020/06/03 全球购物
Miller Harris官网:英国小众香水品牌
2020/09/24 全球购物
《小壁虎借尾巴》教学反思
2014/02/16 职场文书
2014统计局民主生活会对照检查材料思想汇报
2014/10/02 职场文书
2014年个人工作总结范文
2014/11/07 职场文书
2015年母亲节寄语
2015/03/23 职场文书
Python 中的Sympy详细使用
2021/08/07 Python