完美解决TensorFlow和Keras大数据量内存溢出的问题


Posted in Python onJuly 03, 2020

内存溢出问题是参加kaggle比赛或者做大数据量实验的第一个拦路虎。

以前做的练手小项目导致新手产生一个惯性思维——读取训练集图片的时候把所有图读到内存中,然后分批训练。

其实这是有问题的,很容易导致OOM。现在内存一般16G,而训练集图片通常是上万张,而且RGB图,还很大,VGG16的图片一般是224x224x3,上万张图片,16G内存根本不够用。这时候又会想起——设置batch,但是那个batch的输入参数却又是图片,它只是把传进去的图片分批送到显卡,而我OOM的地方恰是那个“传进去”的图片,怎么办?

解决思路其实说来也简单,打破思维定式就好了,不是把所有图片读到内存中,而是只把所有图片的路径一次性读到内存中。

大致的解决思路为:

将上万张图片的路径一次性读到内存中,自己实现一个分批读取函数,在该函数中根据自己的内存情况设置读取图片,只把这一批图片读入内存中,然后交给模型,模型再对这一批图片进行分批训练,因为内存一般大于等于显存,所以内存的批次大小和显存的批次大小通常不相同。

下面代码分别介绍Tensorflow和Keras分批将数据读到内存中的关键函数。Tensorflow对初学者不太友好,所以我个人现阶段更习惯用它的高层API Keras来做相关项目,下面的TF实现是之前不会用Keras分批读时候参考的一些列资料,在模型训练上仍使用Keras,只有分批读取用了TF的API。

Tensorlow

在input.py里写get_batch函数。

def get_batch(X_train, y_train, img_w, img_h, color_type, batch_size, capacity):
  '''
  Args:
    X_train: train img path list
    y_train: train labels list
    img_w: image width
    img_h: image height
    batch_size: batch size
    capacity: the maximum elements in queue
  Returns:
    X_train_batch: 4D tensor [batch_size, width, height, chanel],\
            dtype=tf.float32
    y_train_batch: 1D tensor [batch_size], dtype=int32
  '''
  X_train = tf.cast(X_train, tf.string)

  y_train = tf.cast(y_train, tf.int32)
  
  # make an input queue
  input_queue = tf.train.slice_input_producer([X_train, y_train])

  y_train = input_queue[1]
  X_train_contents = tf.read_file(input_queue[0])
  X_train = tf.image.decode_jpeg(X_train_contents, channels=color_type)

  X_train = tf.image.resize_images(X_train, [img_h, img_w], 
                   tf.image.ResizeMethod.NEAREST_NEIGHBOR)

  X_train_batch, y_train_batch = tf.train.batch([X_train, y_train],
                         batch_size=batch_size,
                         num_threads=64,
                         capacity=capacity)
  y_train_batch = tf.one_hot(y_train_batch, 10)

  return X_train_batch, y_train_batch

在train.py文件中训练(下面不是纯TF代码,model.fit是Keras的拟合,用纯TF的替换就好了)。

X_train_batch, y_train_batch = inp.get_batch(X_train, y_train, 
                       img_w, img_h, color_type, 
                       train_batch_size, capacity)
X_valid_batch, y_valid_batch = inp.get_batch(X_valid, y_valid, 
                       img_w, img_h, color_type, 
                       valid_batch_size, capacity)
with tf.Session() as sess:

  coord = tf.train.Coordinator()
  threads = tf.train.start_queue_runners(coord=coord)
  try:
    for step in np.arange(max_step):
      if coord.should_stop() :
        break
      X_train, y_train = sess.run([X_train_batch, 
                       y_train_batch])
      X_valid, y_valid = sess.run([X_valid_batch,
                       y_valid_batch])
       
      ckpt_path = 'log/weights-{val_loss:.4f}.hdf5'
      ckpt = tf.keras.callbacks.ModelCheckpoint(ckpt_path, 
                           monitor='val_loss', 
                           verbose=1, 
                           save_best_only=True, 
                           mode='min')
      model.fit(X_train, y_train, batch_size=64, 
             epochs=50, verbose=1,
             validation_data=(X_valid, y_valid),
             callbacks=[ckpt])
      
      del X_train, y_train, X_valid, y_valid

  except tf.errors.OutOfRangeError:
    print('done!')
  finally:
    coord.request_stop()
  coord.join(threads)
  sess.close()

Keras

keras文档中对fit、predict、evaluate这些函数都有一个generator,这个generator就是解决分批问题的。

关键函数:fit_generator

# 读取图片函数
def get_im_cv2(paths, img_rows, img_cols, color_type=1, normalize=True):
  '''
  参数:
    paths:要读取的图片路径列表
    img_rows:图片行
    img_cols:图片列
    color_type:图片颜色通道
  返回: 
    imgs: 图片数组
  '''
  # Load as grayscale
  imgs = []
  for path in paths:
    if color_type == 1:
      img = cv2.imread(path, 0)
    elif color_type == 3:
      img = cv2.imread(path)
    # Reduce size
    resized = cv2.resize(img, (img_cols, img_rows))
    if normalize:
      resized = resized.astype('float32')
      resized /= 127.5
      resized -= 1. 
    
    imgs.append(resized)
    
  return np.array(imgs).reshape(len(paths), img_rows, img_cols, color_type)

获取批次函数,其实就是一个generator

def get_train_batch(X_train, y_train, batch_size, img_w, img_h, color_type, is_argumentation):
  '''
  参数:
    X_train:所有图片路径列表
    y_train: 所有图片对应的标签列表
    batch_size:批次
    img_w:图片宽
    img_h:图片高
    color_type:图片类型
    is_argumentation:是否需要数据增强
  返回: 
    一个generator,x: 获取的批次图片 y: 获取的图片对应的标签
  '''
  while 1:
    for i in range(0, len(X_train), batch_size):
      x = get_im_cv2(X_train[i:i+batch_size], img_w, img_h, color_type)
      y = y_train[i:i+batch_size]
      if is_argumentation:
        # 数据增强
        x, y = img_augmentation(x, y)
      # 最重要的就是这个yield,它代表返回,返回以后循环还是会继续,然后再返回。就比如有一个机器一直在作累加运算,但是会把每次累加中间结果告诉你一样,直到把所有数加完
      yield({'input': x}, {'output': y})

训练函数

result = model.fit_generator(generator=get_train_batch(X_train, y_train, train_batch_size, img_w, img_h, color_type, True), 
     steps_per_epoch=1351, 
     epochs=50, verbose=1,
     validation_data=get_train_batch(X_valid, y_valid, valid_batch_size,img_w, img_h, color_type, False),
     validation_steps=52,
     callbacks=[ckpt, early_stop],
     max_queue_size=capacity,
     workers=1)

就是这么简单。但是当初从0到1的过程很难熬,每天都没有进展,没有头绪,急躁占据了思维的大部,熬过了这个阶段,就会一切顺利,不是运气,而是踩过的从0到1的每个脚印累积的灵感的爆发,从0到1的脚印越多,后面的路越顺利。

以上这篇完美解决TensorFlow和Keras大数据量内存溢出的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
用Python写一个无界面的2048小游戏
May 24 Python
Python3中的列表,元组,字典,字符串相关知识小结
Nov 10 Python
Python简单生成随机姓名的方法示例
Dec 27 Python
python生成ppt的方法
Jun 07 Python
如何在Django中添加没有微秒的 DateTimeField 属性详解
Jan 30 Python
Python3数字求和的实例
Feb 19 Python
Python多项式回归的实现方法
Mar 11 Python
Python实现某论坛自动签到功能
Aug 20 Python
python 字典有序并写入json文件过程解析
Sep 30 Python
python DataFrame转dict字典过程详解
Dec 26 Python
浅谈Django QuerySet对象(模型.objects)的常用方法
Mar 28 Python
python开发前景如何
Jun 11 Python
Keras 在fit_generator训练方式中加入图像random_crop操作
Jul 03 #Python
keras的三种模型实现与区别说明
Jul 03 #Python
Keras中 ImageDataGenerator函数的参数用法
Jul 03 #Python
python程序如何进行保存
Jul 03 #Python
keras的ImageDataGenerator和flow()的用法说明
Jul 03 #Python
python如何安装下载后的模块
Jul 03 #Python
python中id函数运行方式
Jul 03 #Python
You might like
图解上海144收音机
2021/03/02 无线电
功能强大的PHP POST提交数据类
2016/07/15 PHP
PHP常用算法和数据结构示例(必看篇)
2017/03/15 PHP
javascript 有趣而诡异的数组
2009/04/06 Javascript
关于query Javascript CSS Selector engine
2013/04/12 Javascript
js代码实现无缝滚动(文字和图片)
2015/08/20 Javascript
理解 JavaScript Scoping & Hoisting(二)
2015/11/18 Javascript
基于javascript实现tab选项卡切换特效调试笔记
2016/03/30 Javascript
Nodejs高扩展性的模板引擎 functmpl简介
2017/02/13 NodeJs
微信小程序左滑删除效果的实现代码
2017/02/20 Javascript
JS实现常见的查找、排序、去重算法示例
2018/05/21 Javascript
解决JavaScript中0.1+0.2不等于0.3问题
2018/10/23 Javascript
js blob类型url的视频下载问题的解决
2019/11/29 Javascript
Javascript如何实现双指控制图片功能
2020/02/25 Javascript
JavaScript代理模式原理与用法实例详解
2020/03/10 Javascript
Vue中watch、computed、updated三者的区别及用法
2020/07/27 Javascript
python实现类似ftp传输文件的网络程序示例
2014/04/08 Python
Python多线程、异步+多进程爬虫实现代码
2016/02/17 Python
谈谈python中GUI的选择
2018/03/01 Python
PyQt5每天必学之日历控件QCalendarWidget
2018/04/19 Python
python使用requests模块实现爬取电影天堂最新电影信息
2019/04/03 Python
python实现从wind导入数据
2019/12/03 Python
Python urlopen()和urlretrieve()用法解析
2020/01/07 Python
django的autoreload机制实现
2020/06/03 Python
python中xlutils库用法浅析
2020/12/29 Python
梵蒂冈和罗马卡:Omnia Card Pass
2018/02/10 全球购物
美国巧克力喷泉品牌:Sephra
2019/05/05 全球购物
如何用Java实现列出某个目录下的所有子目录
2015/07/20 面试题
幼儿园国庆节活动方案
2014/02/01 职场文书
挂职自我鉴定
2014/02/26 职场文书
保险经纪人求职信
2014/03/11 职场文书
蓝颜请假条
2014/04/11 职场文书
安全协议书范本
2014/04/21 职场文书
教育读书笔记
2015/07/02 职场文书
关于实现中国梦的心得体会
2016/01/05 职场文书
一文读懂go中semaphore(信号量)源码
2021/04/03 Golang