python基于celery实现异步任务周期任务定时任务


Posted in Python onDecember 30, 2019

这篇文章主要介绍了python基于celery实现异步任务周期任务定时任务,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

hello, 小伙伴们, 好久不更新了,这一次带来的是celery在python中的应用以及设置异步任务周期任务和定时任务的步骤,希望能给入坑的你带来些许帮助.

首先是对celery的介绍,Celery其实是一个专注于实时处理和调度任务的分布式任务队列,同时提供操作和维护分布式系统所需要的全部数据, 因此可以用它提供的接口快速实现并管理一个分布式的任务队列,它本身不是任务队列,它是封装了操作常见任务队列的各种操作, 可以使用它快速进行任务队列的使用与管理.在Python中的组成部分是 1.用户任务 app 2.管道 broker 用于存储任务 官方推荐的是 redis rabbitMQ / backend 用于存储任务执行结果的 3, 员工 worker 大致流程入下:

python基于celery实现异步任务周期任务定时任务

最左边的是用户, 用户发起1个请求给服务器, 要服务器执行10个任务,将这10个任务分给10个调度器,即开启10个线程进行任务处理,worker会一直监听调度器是否有任务, 一旦发现有新的任务, 就会立即执行新任务,一旦执行完就会返回给调度器, 即backend, backend会将请求发送给服务器, 服务器将结果返回给用户, 表现的结果就是,这10个任务同时完成,同时返回,,这就是Celery的整个工作流程, 其中的角色分别为,任务(app_work), 调度器(broker + backend), 将任务缓存的部分, 即将所有任务暂时存在的地方,相当于生产者, 消费者(worker 可以指定数量, 即在创建worker命令的时候可以指定数量), 在worker拿到任务后,人就控制不了了, 除非把worker杀死, 不然肯定会执行完.

也即 任务来了以后, 调度器(broker)去缓存任务, worker去执行任务, 完成后返回backend,接着返回,

还有就是关于定时任务和周期任务在linux上为什么不用自身所带着的去做,是因为linux周期定时任务是不可控的, 不好管理, 返回值保存也是个麻烦事, 而celery只要开启着调度器, 就可以随时把人物结果获取到,即使用celery控制起来是非常方便的.

接下来就是实例代码:

workers.py

from celery import Celery
import time
# 创建一个Celery实例, 就是用户的应用app 第一个参数是任务名称, 可以随意起 后面的就是配置的broker和backend
diaoduqi= Celery("mytask", broker="redis://127.0.0.1:6379", backend="redis:127.0.0.1:6379")
# 接下来是为应用创建任务 ab
@diaoduqi.task
def ab(a,b):
  time.sleep(15)
  return a+b

brokers.py

from worker import ab

# 将任务交给Celery的Worker执行
res = ab.delay(2,4)

#返回任务ID
print(res.id)

backends.py

from celery.result import AsyncResult
from worker import diaoduqi

# 异步获取任务返回值
async_task = AsyncResult(id="31ec65e8-3995-4ee1-b3a8-1528400afd5a",app=diaoduqi)

# 判断异步任务是否执行成功
if async_task.successful():
  #获取异步任务的返回值
  result = async_task.get()
  print(result)
else:
  print("任务还未执行完成")

为了方便,现在直接将三个文件代表的部分命名在文件名称中.首先是启动workers.py

启动方式是依据系统的不同来启动的, 对于linux下 celery worker -A workers -l INFO 也可以指定开启的worker数量 即在后面添加的参数是 -c 5 表示指定5个worker 理论上指定的worker是无上限的,

在windows下需要安装一个eventlet模块进行运行, 不然不会运行成功 pip install eventlet 可以开启线程 不指定数量是默认6个worker, 理论上worker的数量可以开启无限个,但是celery worker -A s1 -l INFO -P eventlet -c 5 使用eventlet 开启5个worker 执行

该命令后 处于就绪状态, 需要发布任务, 即brokers.py进行任务发布, 方法是使用delay的方式执行异步任务, 返回了一个任务id, 接着去backends.py中取这个任务id, 去查询任务是否完成,判定条件即任务.successful 判断是否执行完, 上面就是celery异步执行任务的用法与解释

接下来就是celery在项目中的应用

在实际项目中应用celery是有一定规则的, 即目录结构应该如下.

python基于celery实现异步任务周期任务定时任务

结构说明 首先是创建一个CeleryTask的包,接着是在里面创建一个celery.py,必须是这个文件 关于重名的问题, 找寻模块的顺序是先从当前目录中去寻找, 根本找不到,接着是从内置模块中去找, 根本就找不到写的这个celery这个文件,

celery.py

from celery import Celery
DDQ = Celery("DDQ",broker="redis://127.0.0.1:6379",backend="redis://127.0.0.1:6379",
       include=["CeleryTask.TaskOne","CeleryTask.TaskTwo"])

TaskOne.py

import time
from CeleryTask.celery import DDQ
@DDQ.task
def one1(a,b):
  # time.sleep(3)
  return a+b
@DDQ.task
def one2():
  time.sleep(2)
  return "one2"

taskTwo.py

import time
from CeleryTask.celery import DDQ
@DDQ.task
def two1():
  time.sleep(2)
  return "two1"
@DDQ.task
def two2():
  time.sleep(3)
  return "two2"

getR.py

from CeleryTask.TaskOne import one1 as one

# one.delay(10,10)
# two.delay(20,20)

# 定时任务我们不在使用delay这个方法了,delay是立即交给task 去执行
# 现在我们使用apply_async定时执行

# 首先我们要先给task一个执行任务的时间
import datetime, time

# 获取当前时间 此时间为东八区时间
ctime = time.time()
# 将当前的东八区时间改为 UTC时间 注意这里一定是UTC时间,没有其他说法
utc_time = datetime.datetime.utcfromtimestamp(ctime)
# 为当前时间增加 10 秒
add_time = datetime.timedelta(seconds=10)
action_time = utc_time + add_time

# action_time 就是当前时间未来10秒之后的时间
# 现在我们使用apply_async定时执行
res = one.apply_async(args=(6, 10), eta=action_time)
res = one.apply_async(args=(6, 10), eta=action_time)
res = one.apply_async(args=(6, 10), eta=action_time)
res = one.apply_async(args=(6, 10), eta=action_time)
res = one.apply_async(args=(6, 10), eta=action_time)
res = one.apply_async(args=(6, 10), eta=action_time)
print(res.id)
# 这样原本延迟5秒执行的One函数现在就要在10秒钟以后执行了

接着是在命令行cd到与CeleryTask同级目录下, 使用命令 celery worker -A CeleryTask -l INFO -P eventlet -c 50 这样 就开启了worker 接着去 发布任务, 在定时任务中不再使用delay这个方法了,

delay是立即交给ttask去执行, 在这里使用 apply_async定时执行 指的是调度的时候去定时执行

需要设置的是UTC时间, 以及定时的时间(多长时间以后执行) 之后使用 celery worker -A CeleryTask -l INFO -P eventlet -c 50 命令开启worker, 之后运行 getR.py文件发布任务, 可以看到在定义的时间以后执行该任务

周期任务

周期任务 指的是在指定时间去执行任务 需要导入的一个模块有 crontab

文件结构如下

python基于celery实现异步任务周期任务定时任务

结构同定时任务差不多,只不过需要变动一下文件内容 GetR文件已经不需要了,可以删除.

celery.py

from celery import Celery
from celery.schedules import crontab

DDQ = Celery("DDQ", broker="redis://127.0.0.1:6379", backend="redis://127.0.0.1:6379",
       include=["CeleryTask.TaskOne", "CeleryTask.TaskTwo"])

# 我要要对beat任务生产做一个配置,这个配置的意思就是每10秒执行一次Celery_task.task_one任务参数是(10,10)
DDQ.conf.beat_schedule = {
  "each10s_task": {
    "task": "CeleryTask.TaskOne.one1",
    "schedule": 10, # 每10秒钟执行一次
    "args": (10, 10)
  },
  "each1m_task": {
    "task": "CeleryTask.TaskOne.one2",
    "schedule": crontab(minute=1) # 每1分钟执行一次 也可以替换成 60 即 "schedule": 60
  }
}

TaskOne.py

import time
from CeleryTask.celery import DDQ
@DDQ.task
def one1(a,b):
  # time.sleep(3)
  return a+b
@DDQ.task
def one2():
  time.sleep(2)
  return "one2"

taskTwo.py

import time
from CeleryTask.celery import DDQ
@DDQ.task
def two1():
  time.sleep(2)
  return "two1"
@DDQ.task
def two2():
  time.sleep(3)
  return "two2"

以上配置完成以后,这时候就不能直接创建worker了,因为要执行周期任务,需要首先有一个任务的生产方, 即 celery beat -A CeleryTask, 用来产生创建者, 接着是创建worker worker的创建命令还是原来的命令, 即 celery worker -A CeleryTask -l INFO -P eventlet -c 50 , 创建完worker之后, 每10秒就会由beat创建一个任务给 worker去执行.至此, celery创建异步任务, 周期任务,定时任务完毕, 伙伴们自己拿去测试吧.

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
给Python初学者的一些编程技巧
Apr 03 Python
python获取一组汉字拼音首字母的方法
Jul 01 Python
python之Character string(实例讲解)
Sep 25 Python
Python输出带颜色的字符串实例
Oct 10 Python
对python中for、if、while的区别与比较方法
Jun 25 Python
Python----数据预处理代码实例
Mar 20 Python
python3.6根据m3u8下载mp4视频
Jun 17 Python
33个Python爬虫项目实战(推荐)
Jul 08 Python
Python 实现自动获取种子磁力链接方式
Jan 16 Python
Python数据可视化图实现过程详解
Jun 12 Python
Python 解析库json及jsonpath pickle的实现
Aug 17 Python
python实现人性化显示金额数字实例详解
Sep 25 Python
Django框架之中间件MiddleWare的实现
Dec 30 #Python
Django 路由层URLconf的实现
Dec 30 #Python
python解析多层json操作示例
Dec 30 #Python
pytorch 求网络模型参数实例
Dec 30 #Python
利用python3 的pygame模块实现塔防游戏
Dec 30 #Python
pytorch 批次遍历数据集打印数据的例子
Dec 30 #Python
python多线程使用方法实例详解
Dec 30 #Python
You might like
thinkphp利用模型通用数据编辑添加和删除的实例代码
2016/11/20 PHP
php判断数组是否为空的实例方法
2020/05/10 PHP
js 省地市级联选择
2010/02/07 Javascript
html文件中jquery与velocity变量中的$冲突的解决方法
2013/11/01 Javascript
轻松实现JavaScript图片切换
2016/01/12 Javascript
js+flash实现的5图变换效果广告代码(附演示与demo源码下载)
2016/04/01 Javascript
JavaScript组合模式学习要点
2016/08/26 Javascript
利用imgareaselect辅助后台实现图片上传裁剪
2017/03/02 Javascript
通过命令行生成vue项目框架的方法
2017/07/12 Javascript
javascript实现计算指定范围内的质数示例
2018/12/29 Javascript
[08:54]DOTA2-DPC中国联赛 正赛 Aster vs LBZS 选手采访
2021/03/11 DOTA
Python使用htpasswd实现基本认证授权的例子
2014/06/10 Python
Python中处理时间的几种方法小结
2015/04/09 Python
Python的Flask框架应用调用Redis队列数据的方法
2016/06/06 Python
Python从ZabbixAPI获取信息及实现Zabbix-API 监控的方法
2018/09/17 Python
解决Django中调用keras的模型出现的问题
2019/08/07 Python
解决Python命令行下退格,删除,方向键乱码(亲测有效)
2020/01/16 Python
python3安装OCR识别库tesserocr过程图解
2020/04/02 Python
Python 可视化神器Plotly详解
2020/12/26 Python
世界上最大的网络主机公司:1&1
2016/10/12 全球购物
HEMA英国:荷兰原创设计
2018/08/28 全球购物
添柏岚英国官方网站:Timberland英国
2019/11/28 全球购物
中东奢侈品购物网站:Ounass
2020/09/02 全球购物
什么是serialVersionUID
2016/03/04 面试题
优秀应届毕业生推荐信
2014/02/18 职场文书
职工小家建设活动方案
2014/08/25 职场文书
2015年体育教学工作总结
2015/05/20 职场文书
交通事故案件代理词
2015/05/23 职场文书
2016教师党员学习心得体会
2016/01/21 职场文书
学者《孟子》名人名言
2019/08/09 职场文书
导游词之襄阳古城
2019/09/27 职场文书
《学会生存》读后感3篇
2019/12/09 职场文书
用Python提取PDF表格的方法
2021/04/11 Python
国产动画《万圣街》日语配音版制作决定!
2022/03/20 国漫
如何通过简单的代码描述Angular父组件、子组件传值
2022/04/07 Javascript
使用CSS实现黑白格背景效果
2022/06/01 HTML / CSS