浅谈pandas中Dataframe的查询方法([], loc, iloc, at, iat, ix)


Posted in Python onApril 10, 2018

pandas为我们提供了多种切片方法,而要是不太了解这些方法,就会经常容易混淆。下面举例对这些切片方法进行说明。

数据介绍

先随机生成一组数据:

In [5]: rnd_1 = [random.randrange(1,20) for x in xrange(1000)]
  ...: rnd_2 = [random.randrange(1,20) for x in xrange(1000)]
  ...: rnd_3 = [random.randrange(1,20) for x in xrange(1000)]
  ...: fecha = pd.date_range('2012-4-10', '2015-1-4')
  ...: 
  ...: data = pd.DataFrame({'fecha':fecha, 'rnd_1': rnd_1, 'rnd_2': rnd_2, 'rnd_3': rnd_3})
In [6]: data.describe()
Out[6]: 
       rnd_1    rnd_2    rnd_3
count 1000.000000 1000.000000 1000.000000
mean   9.946000   9.825000   9.894000
std    5.553911   5.559432   5.423484
min    1.000000   1.000000   1.000000
25%    5.000000   5.000000   5.000000
50%   10.000000  10.000000  10.000000
75%   15.000000  15.000000  14.000000
max   19.000000  19.000000  19.000000

[]切片方法

使用方括号能够对DataFrame进行切片,有点类似于python的列表切片。按照索引能够实现行选择或列选择或区块选择。

# 行选择
In [7]: data[1:5]
Out[7]: 
    fecha rnd_1 rnd_2 rnd_3
1 2012-04-11   1   16   3
2 2012-04-12   7   6   1
3 2012-04-13   2   16   7
4 2012-04-14   4   17   7
# 列选择
In [10]: data[['rnd_1', 'rnd_3']]
Out[10]: 
   rnd_1 rnd_3
0    8   12
1    1   3
2    7   1
3    2   7
4    4   7
5    12   8
6    2   12
7    9   8
8    13   17
9    4   7
10   14   14
11   19   16
12    2   12
13   15   18
14   13   18
15   13   11
16   17   7
17   14   10
18    9   6
19   11   15
20   16   13
21   18   9
22    1   18
23    4   3
24    6   11
25    2   13
26    7   17
27   11   8
28    3   12
29    4   2
..   ...  ...
970   8   14
971   19   5
972   13   2
973   8   10
974   8   17
975   6   16
976   3   2
977   12   6
978   12   10
979   15   13
980   8   4
981   17   3
982   1   17
983   11   5
984   7   7
985   13   14
986   6   19
987   13   9
988   3   15
989   19   6
990   7   11
991   11   7
992   19   12
993   2   15
994   10   4
995   14   13
996   12   11
997   11   15
998   17   14
999   3   8
[1000 rows x 2 columns]
# 区块选择
In [11]: data[:7][['rnd_1', 'rnd_2']]
Out[11]: 
  rnd_1 rnd_2
0   8   17
1   1   16
2   7   6
3   2   16
4   4   17
5   12   19
6   2   7

不过对于多列选择,不能像行选择时一样使用1:5这样的方法来选择。

In [12]: data[['rnd_1':'rnd_3']]
 File "<ipython-input-13-6291b6a83eb0>", line 1
  data[['rnd_1':'rnd_3']]
         ^
SyntaxError: invalid syntax

loc

loc可以让你按照索引来进行行列选择。

In [13]: data.loc[1:5]
Out[13]: 
    fecha rnd_1 rnd_2 rnd_3
1 2012-04-11   1   16   3
2 2012-04-12   7   6   1
3 2012-04-13   2   16   7
4 2012-04-14   4   17   7
5 2012-04-15   12   19   8

这里需要注意的是,loc与第一种方法不同之处在于会把第5行也选择进去,而第一种方法只会选择到第4行为止。

data.loc[2:4, ['rnd_2', 'fecha']]
Out[14]: 
  rnd_2   fecha
2   6 2012-04-12
3   16 2012-04-13
4   17 2012-04-14

loc能够选择在两个特定日期之间的数据,需要注意的是这两个日期必须都要在索引中。

In [15]: data_fecha = data.set_index('fecha')
  ...: data_fecha.head()
Out[15]: 
      rnd_1 rnd_2 rnd_3
fecha             
2012-04-10   8   17   12
2012-04-11   1   16   3
2012-04-12   7   6   1
2012-04-13   2   16   7
2012-04-14   4   17   7
In [16]: # 生成两个特定日期
  ...: fecha_1 = dt.datetime(2013, 4, 14)
  ...: fecha_2 = dt.datetime(2013, 4, 18)
  ...: 
  ...: # 生成切片数据
  ...: data_fecha.loc[fecha_1: fecha_2]
Out[16]: 
      rnd_1 rnd_2 rnd_3
fecha             
2013-04-14   17   10   5
2013-04-15   14   4   9
2013-04-16   1   2   18
2013-04-17   9   15   1
2013-04-18   16   7   17

更新:如果没有特殊需求,强烈建议使用loc而尽量少使用[],因为loc在对DataFrame进行重新赋值操作时会避免chained indexing问题,使用[]时编译器很可能会给出SettingWithCopy的警告。

具体可以参见官方文档:http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

iloc

如果说loc是按照索引(index)的值来选取的话,那么iloc就是按照索引的位置来进行选取。iloc不关心索引的具体值是多少,只关心位置是多少,所以使用iloc时方括号中只能使用数值。

# 行选择
In [17]: data_fecha[10: 15]
Out[17]: 
      rnd_1 rnd_2 rnd_3
fecha             
2012-04-20   14   6   14
2012-04-21   19   14   16
2012-04-22   2   6   12
2012-04-23   15   8   18
2012-04-24   13   8   18
# 列选择
In [18]: data_fecha.iloc[:,[1,2]].head()
Out[18]: 
      rnd_2 rnd_3
fecha          
2012-04-10   17   12
2012-04-11   16   3
2012-04-12   6   1
2012-04-13   16   7
2012-04-14   17   7
# 切片选择
In [19]: data_fecha.iloc[[1,12,34],[0,2]]
Out[19]: 
      rnd_1 rnd_3
fecha          
2012-04-11   1   3
2012-04-22   2   12
2012-05-14   17   10

at

at的使用方法与loc类似,但是比loc有更快的访问数据的速度,而且只能访问单个元素,不能访问多个元素。

In [20]: timeit data_fecha.at[fecha_1,'rnd_1']
The slowest run took 3783.11 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 11.3 µs per loop
In [21]: timeit data_fecha.loc[fecha_1,'rnd_1']
The slowest run took 121.24 times longer than the fastest. This could mean that an intermediate result is being cached.
10000 loops, best of 3: 192 µs per loop
In [22]: data_fecha.at[fecha_1,'rnd_1']
Out[22]: 17

iat

iat对于iloc的关系就像at对于loc的关系,是一种更快的基于索引位置的选择方法,同at一样只能访问单个元素。

In [23]: data_fecha.iat[1,0]
Out[23]: 1
In [24]: timeit data_fecha.iat[1,0]
The slowest run took 6.23 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 8.77 µs per loop
In [25]: timeit data_fecha.iloc[1,0]
10000 loops, best of 3: 158 µs per loop

ix

以上说过的几种方法都要求查询的秩在索引中,或者位置不超过长度范围,而ix允许你得到不在DataFrame索引中的数据。

In [28]: date_1 = dt.datetime(2013, 1, 10, 8, 30)
  ...: date_2 = dt.datetime(2013, 1, 13, 4, 20)
  ...: 
  ...: # 生成切片数据
  ...: data_fecha.ix[date_1: date_2]
Out[28]: 
      rnd_1 rnd_2 rnd_3
fecha             
2013-01-11   19   17   19
2013-01-12   10   9   17
2013-01-13   15   3   10

如上面的例子所示,2013年1月10号并没有被选择进去,因为这个时间点被看作为0点0分,比8点30分要早一些。

以上这篇浅谈pandas中Dataframe的查询方法([], loc, iloc, at, iat, ix)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
一个简单的python程序实例(通讯录)
Nov 29 Python
简介Django框架中可使用的各类缓存
Jul 23 Python
Python中的变量和作用域详解
Jul 13 Python
Python使用修饰器执行函数的参数检查功能示例
Sep 26 Python
python实现mysql的读写分离及负载均衡
Feb 04 Python
Python/ArcPy遍历指定目录中的MDB文件方法
Oct 27 Python
django 2.2和mysql使用的常见问题
Jul 18 Python
PyCharm中代码字体大小调整方法
Jul 29 Python
Python操作列表常用方法实例小结【创建、遍历、统计、切片等】
Oct 25 Python
python中dict()的高级用法实现
Nov 13 Python
python爬虫数据保存到mongoDB的实例方法
Jul 28 Python
Python中使用aiohttp模拟服务器出现错误问题及解决方法
Oct 31 Python
python pandas dataframe 行列选择,切片操作方法
Apr 10 #Python
python3下实现搜狗AI API的代码示例
Apr 10 #Python
Python基于pycrypto实现的AES加密和解密算法示例
Apr 10 #Python
浅谈Pandas中map, applymap and apply的区别
Apr 10 #Python
对pandas中apply函数的用法详解
Apr 10 #Python
Python 25行代码实现的RSA算法详解
Apr 10 #Python
使用pandas中的DataFrame数据绘制柱状图的方法
Apr 10 #Python
You might like
详解php协程知识点
2018/09/21 PHP
jquery插件 cluetip 关键词注释
2010/01/12 Javascript
选择器中含有空格在使用示例及注意事项
2013/07/31 Javascript
javascript 获取网页标题代码实例
2014/01/22 Javascript
基于javascript实现的搜索时自动提示功能
2014/12/26 Javascript
为JS扩展Array.prototype.indexOf引发的问题及解决办法
2015/01/21 Javascript
jquery实现右键菜单插件
2015/03/29 Javascript
jQuery添加删除DOM元素方法详解
2016/01/18 Javascript
javascript判断图片是否加载完成的方法推荐
2016/05/13 Javascript
简单的vue-resourse获取json并应用到模板示例
2017/02/10 Javascript
ECMAscript 变量作用域总结概括
2017/08/18 Javascript
Vue.JS实现垂直方向展开、收缩不定高度模块的JS组件
2018/06/19 Javascript
详细讲解如何创建, 发布自己的 Vue UI 组件库
2019/05/29 Javascript
uniapp与webview之间的相互传值的实现
2020/06/29 Javascript
python实现自动重启本程序的方法
2015/07/09 Python
深入解析Python中的线程同步方法
2016/06/14 Python
Python 专题六 局部变量、全局变量global、导入模块变量
2017/03/20 Python
详解Python文本操作相关模块
2017/06/22 Python
python批量替换页眉页脚实例代码
2018/01/22 Python
Python3基于sax解析xml操作示例
2018/05/22 Python
python递归全排列实现方法
2018/08/18 Python
Linux 修改Python命令的方法示例
2018/12/03 Python
python 自动批量打开网页的示例
2019/02/21 Python
pyqt5 lineEdit设置密码隐藏,删除lineEdit已输入的内容等属性方法
2019/06/24 Python
Python PyPDF2模块安装使用解析
2020/01/19 Python
python温度转换华氏温度实现代码
2020/12/06 Python
Html5实现首页动态视频背景的示例代码
2019/09/25 HTML / CSS
H5离线存储Manifest原理及使用
2020/04/28 HTML / CSS
德国排名第一的主题公园门票网站:Attraction Tickets Direct
2019/09/09 全球购物
推广普通话演讲稿
2014/05/23 职场文书
酒店餐厅2014重阳节活动策划方案
2014/09/16 职场文书
2015年售票员工作总结
2015/04/29 职场文书
幼儿园小班班务总结
2015/08/03 职场文书
Vue中foreach数组与js中遍历数组的写法说明
2021/06/05 Vue.js
MYSQL 的10大经典优化案例场景实战
2021/09/14 MySQL
动漫APP软件排行榜前十名,半次元上榜,第一款由腾讯公司推出
2022/03/18 杂记