Python机器学习应用之工业蒸汽数据分析篇详解


Posted in Python onJanuary 18, 2022

一、数据集

1. 训练集 提取码:1234

2. 测试集 提取码:1234

二、数据分析

1 数据导入

#%%导入基础包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
import warnings
warnings.filterwarnings("ignore")
#%%读取数据
train_data_file = "D:\Python\ML\data\zhengqi_train.txt"
test_data_file =  "D:\Python\ML\data\/zhengqi_test.txt"
train_data = pd.read_csv(train_data_file, sep='\t', encoding='utf-8')
test_data = pd.read_csv(test_data_file, sep='\t', encoding='utf-8')
#%%查看训练集特征变量信息
train_infor=train_data.describe()
test_infor=test_data.describe()

Python机器学习应用之工业蒸汽数据分析篇详解

Python机器学习应用之工业蒸汽数据分析篇详解

2 数据特征探索(数据可视化)

#%%可视化探索数据
# 画v0箱式图
fig = plt.figure(figsize=(4, 6))  # 指定绘图对象宽度和高度
sns.boxplot(y=train_data['V0'],orient="v", width=0.5)
#%%可以将所有的特征都画出
'''
column = train_data.columns.tolist()[:39]  # 列表头
fig = plt.figure(figsize=(20, 40))  # 指定绘图对象宽度和高度
for i in range(38):
    plt.subplot(13, 3, i + 1)  # 13行3列子图
    sns.boxplot(train_data[column[i]], orient="v", width=0.5)  # 箱式图
    plt.ylabel(column[i], fontsize=8)
plt.show()
'''
#%%查看v0的数据分布直方图,绘制QQ图查看数据是否近似于正态分布
plt.figure(figsize=(10,5))
ax=plt.subplot(1,2,1)
sns.distplot(train_data['V0'],fit=stats.norm)
ax=plt.subplot(1,2,2)
res = stats.probplot(train_data['V0'], plot=plt)
#%%查看所有特征的数据分布情况
'''
train_cols = 6
train_rows = len(train_data.columns)
plt.figure(figsize=(4*train_cols,4*train_rows))

i=0
for col in train_data.columns:
    i+=1
    ax=plt.subplot(train_rows,train_cols,i)
    sns.distplot(train_data[col],fit=stats.norm)
    
    i+=1
    ax=plt.subplot(train_rows,train_cols,i)
    res = stats.probplot(train_data[col], plot=plt)
plt.show()
'''

Python机器学习应用之工业蒸汽数据分析篇详解

Python机器学习应用之工业蒸汽数据分析篇详解

#%%对比统一特征训练集和测试集的分布情况,查看数据分布是否一致
ax = sns.kdeplot(train_data['V0'], color="Red", shade=True)
ax = sns.kdeplot(test_data['V0'], color="Blue", shade=True)
ax.set_xlabel('V0')
ax.set_ylabel("Frequency")
ax = ax.legend(["train","test"])

#%%查看所有特征的训练集和测试集分布情况
'''
dist_cols = 6
dist_rows = len(test_data.columns)
plt.figure(figsize=(4*dist_cols,4*dist_rows))

i=1
for col in test_data.columns:
    ax=plt.subplot(dist_rows,dist_cols,i)
    ax = sns.kdeplot(train_data[col], color="Red", shade=True)
    ax = sns.kdeplot(test_data[col], color="Blue", shade=True)
    ax.set_xlabel(col)
    ax.set_ylabel("Frequency")
    ax = ax.legend(["train","test"])
    
    i+=1
plt.show()
'''

Python机器学习应用之工业蒸汽数据分析篇详解

#%%查看v5,v9,v11,v22,v28的数据分布
drop_col = 6
drop_row = 1

plt.figure(figsize=(5*drop_col,5*drop_row))
i=1
for col in ["V5","V9","V11","V17","V22","V28"]:
    ax =plt.subplot(drop_row,drop_col,i)
    ax = sns.kdeplot(train_data[col], color="Red", shade=True)
    ax = sns.kdeplot(test_data[col], color="Blue", shade=True)
    ax.set_xlabel(col)
    ax.set_ylabel("Frequency")
    ax = ax.legend(["train","test"])
    
    i+=1
plt.show()
#%%删除这些特征
drop_columns=["V5","V9","V11","V17","V22","V28"]
train_data=train_data.drop(columns=drop_columns)
test_data=test_data.drop(columns=drop_columns)

Python机器学习应用之工业蒸汽数据分析篇详解

当训练数据和测试数据分布不一致的时候,会导致模型的泛化能力差,采用删除此类特征的方法

Python机器学习应用之工业蒸汽数据分析篇详解

#%%可视化线性回归关系
fcols = 2
frows = 1
plt.figure(figsize=(8,4))
ax=plt.subplot(1,2,1)
sns.regplot(x='V0', y='target', data=train_data, ax=ax, 
            scatter_kws={'marker':'.','s':3,'alpha':0.3},
            line_kws={'color':'k'});
plt.xlabel('V0')
plt.ylabel('target')

ax=plt.subplot(1,2,2)
sns.distplot(train_data['V0'].dropna())
plt.xlabel('V0')

plt.show()
#%%查看所有特征变量与target变量的线性回归关系
'''
fcols = 6
frows = len(test_data.columns)
plt.figure(figsize=(5*fcols,4*frows))

i=0
for col in test_data.columns:
    i+=1
    ax=plt.subplot(frows,fcols,i)
    sns.regplot(x=col, y='target', data=train_data, ax=ax, 
                scatter_kws={'marker':'.','s':3,'alpha':0.3},
                line_kws={'color':'k'});
    plt.xlabel(col)
    plt.ylabel('target')
    
    i+=1
    ax=plt.subplot(frows,fcols,i)
    sns.distplot(train_data[col].dropna())
    plt.xlabel(col)
'''

Python机器学习应用之工业蒸汽数据分析篇详解

#%%查看特征变量的相关性
train_corr = train_data.corr()
# 画出相关性热力图
ax = plt.subplots(figsize=(20, 16))#调整画布大小
ax = sns.heatmap(train_corr, vmax=.8, square=True, annot=True)#画热力图   annot=True 显示系数

Python机器学习应用之工业蒸汽数据分析篇详解

#%%找出相关程度
plt.figure(figsize=(20, 16))  # 指定绘图对象宽度和高度
colnm = train_data.columns.tolist()  # 列表头
mcorr = train_data[colnm].corr(method="spearman")  # 相关系数矩阵,即给出了任意两个变量之间的相关系数
mask = np.zeros_like(mcorr, dtype=np.bool)  # 构造与mcorr同维数矩阵 为bool型
mask[np.triu_indices_from(mask)] = True  # 角分线右侧为True
cmap = sns.diverging_palette(220, 10, as_cmap=True)  # 返回matplotlib colormap对象
g = sns.heatmap(mcorr, mask=mask, cmap=cmap, square=True, annot=True, fmt='0.2f')  # 热力图(看两两相似度)
plt.show()

Python机器学习应用之工业蒸汽数据分析篇详解

#%%查找特征变量和target变量相关系数大于0.5的特征变量
#寻找K个最相关的特征信息
k = 10 # number of variables for heatmap
cols = train_corr.nlargest(k, 'target')['target'].index

cm = np.corrcoef(train_data[cols].values.T)
hm = plt.subplots(figsize=(10, 10))#调整画布大小
hm = sns.heatmap(train_data[cols].corr(),annot=True,square=True)
plt.show()

Python机器学习应用之工业蒸汽数据分析篇详解

threshold = 0.5
corrmat = train_data.corr()
top_corr_features = corrmat.index[abs(corrmat["target"])>threshold]
plt.figure(figsize=(10,10))
g = sns.heatmap(train_data[top_corr_features].corr(),annot=True,cmap="RdYlGn")

Python机器学习应用之工业蒸汽数据分析篇详解

#%% Threshold for removing correlated variables
threshold = 0.05

# Absolute value correlation matrix
corr_matrix = train_data.corr().abs()
drop_col=corr_matrix[corr_matrix["target"]<threshold].index
#%%删除相关性小于0.05的列
train_data=train_data.drop(columns=drop_col)
test_data=test_data.drop(columns=drop_col)

#%%将train和test合并
train_x=train_data.drop(['target'],axis=1)
data_all=pd.concat([train_x,test_data])

#%%标准化
cols_numeric=list(data_all.columns)

def scale_minmax(col):
    return (col-col.min())/(col.max()-col.min())

data_all[cols_numeric] = data_all[cols_numeric].apply(scale_minmax,axis=0)
print(data_all[cols_numeric].describe())
train_data_process = train_data[cols_numeric]
train_data_process = train_data_process[cols_numeric].apply(scale_minmax,axis=0)

test_data_process = test_data[cols_numeric]
test_data_process = test_data_process[cols_numeric].apply(scale_minmax,axis=0)

Python机器学习应用之工业蒸汽数据分析篇详解

#%%查看v0-v3四个特征的箱盒图,查看其分布是否符合正态分布
cols_numeric_0to4 = cols_numeric[0:4]
## Check effect of Box-Cox transforms on distributions of continuous variables

train_data_process = pd.concat([train_data_process, train_data['target']], axis=1)

fcols = 6
frows = len(cols_numeric_0to4)
plt.figure(figsize=(4*fcols,4*frows))
i=0

for var in cols_numeric_0to4:
    dat = train_data_process[[var, 'target']].dropna()
        
    i+=1
    plt.subplot(frows,fcols,i)
    sns.distplot(dat[var] , fit=stats.norm);
    plt.title(var+' Original')
    plt.xlabel('')
        
    i+=1
    plt.subplot(frows,fcols,i)
    _=stats.probplot(dat[var], plot=plt)
    plt.title('skew='+'{:.4f}'.format(stats.skew(dat[var])))
    plt.xlabel('')
    plt.ylabel('')
        
    i+=1
    plt.subplot(frows,fcols,i)
    plt.plot(dat[var], dat['target'],'.',alpha=0.5)
    plt.title('corr='+'{:.2f}'.format(np.corrcoef(dat[var], dat['target'])[0][1]))
 
    i+=1
    plt.subplot(frows,fcols,i)
    trans_var, lambda_var = stats.boxcox(dat[var].dropna()+1)
    trans_var = scale_minmax(trans_var)      
    sns.distplot(trans_var , fit=stats.norm);
    plt.title(var+' Tramsformed')
    plt.xlabel('')
        
    i+=1
    plt.subplot(frows,fcols,i)
    _=stats.probplot(trans_var, plot=plt)
    plt.title('skew='+'{:.4f}'.format(stats.skew(trans_var)))
    plt.xlabel('')
    plt.ylabel('')
        
    i+=1
    plt.subplot(frows,fcols,i)
    plt.plot(trans_var, dat['target'],'.',alpha=0.5)
    plt.title('corr='+'{:.2f}'.format(np.corrcoef(trans_var,dat['target'])[0][1]))

Python机器学习应用之工业蒸汽数据分析篇详解

三、特征优化

import pandas as pd

train_data_file =  "D:\Python\ML\data\zhengqi_train.txt"
test_data_file =   "D:\Python\ML\data\zhengqi_test.txt"

train_data = pd.read_csv(train_data_file, sep='\t', encoding='utf-8')
test_data = pd.read_csv(test_data_file, sep='\t', encoding='utf-8')

#%%定义特征构造方法,构造特征
epsilon=1e-5

#组交叉特征,可以自行定义,如增加: x*x/y, log(x)/y 等等,使用lambda函数更方便快捷
func_dict = {
            'add': lambda x,y: x+y,
            'mins': lambda x,y: x-y,
            'div': lambda x,y: x/(y+epsilon),
            'multi': lambda x,y: x*y
            }
#%%定义特征构造函数
def auto_features_make(train_data,test_data,func_dict,col_list):
    train_data, test_data = train_data.copy(), test_data.copy()
    for col_i in col_list:
        for col_j in col_list:
            for func_name, func in func_dict.items():
                for data in [train_data,test_data]:
                    func_features = func(data[col_i],data[col_j])
                    col_func_features = '-'.join([col_i,func_name,col_j])
                    data[col_func_features] = func_features
    return train_data,test_data
#%%对训练集和测试集进行特征构造
train_data2, test_data2 = auto_features_make(train_data,test_data,func_dict,col_list=test_data.columns)

四、对特征构造后的训练集和测试集进行主成分分析

#%%PCA
from sklearn.decomposition import PCA   #主成分分析法

#PCA方法降维
pca = PCA(n_components=500)
train_data2_pca = pca.fit_transform(train_data2.iloc[:,0:-1])
test_data2_pca = pca.transform(test_data2)
train_data2_pca = pd.DataFrame(train_data2_pca)
test_data2_pca = pd.DataFrame(test_data2_pca)
train_data2_pca['target'] = train_data2['target']
X_train2 = train_data2[test_data2.columns].values
y_train = train_data2['target']

五、使用LightGBM模型进行训练和预测

#%%使用lightgbm模型对新构造的特征进行模型训练和评估
from sklearn.model_selection import KFold
from sklearn.metrics import mean_squared_error
import lightgbm as lgb
import numpy as np

# 5折交叉验证
kf = KFold(len(X_train2), shuffle=True, random_state=2019)
#%%
# 记录训练和预测MSE
MSE_DICT = {
    'train_mse':[],
    'test_mse':[]
}

# 线下训练预测
for i, (train_index, test_index) in enumerate(kf.split(X_train2)):
    # lgb树模型
    lgb_reg = lgb.LGBMRegressor(
        learning_rate=0.01,
        max_depth=-1,
        n_estimators=5000,
        boosting_type='gbdt',
        random_state=2019,
        objective='regression',
    )
   
    # 切分训练集和预测集
    X_train_KFold, X_test_KFold = X_train2[train_index], X_train2[test_index]
    y_train_KFold, y_test_KFold = y_train[train_index], y_train[test_index]
    
    # 训练模型
    lgb_reg.fit(
            X=X_train_KFold,y=y_train_KFold,
            eval_set=[(X_train_KFold, y_train_KFold),(X_test_KFold, y_test_KFold)],
            eval_names=['Train','Test'],
            early_stopping_rounds=100,
            eval_metric='MSE',
            verbose=50
        )


    # 训练集预测 测试集预测
    y_train_KFold_predict = lgb_reg.predict(X_train_KFold,num_iteration=lgb_reg.best_iteration_)
    y_test_KFold_predict = lgb_reg.predict(X_test_KFold,num_iteration=lgb_reg.best_iteration_) 
    
    print('第{}折 训练和预测 训练MSE 预测MSE'.format(i))
    train_mse = mean_squared_error(y_train_KFold_predict, y_train_KFold)
    print('------\n', '训练MSE\n', train_mse, '\n------')
    test_mse = mean_squared_error(y_test_KFold_predict, y_test_KFold)
    print('------\n', '预测MSE\n', test_mse, '\n------\n')
    
    MSE_DICT['train_mse'].append(train_mse)
    MSE_DICT['test_mse'].append(test_mse)
print('------\n', '训练MSE\n', MSE_DICT['train_mse'], '\n', np.mean(MSE_DICT['train_mse']), '\n------')
print('------\n', '预测MSE\n', MSE_DICT['test_mse'], '\n', np.mean(MSE_DICT['test_mse']), '\n------')

Python机器学习应用之工业蒸汽数据分析篇详解

..... 不想等它跑完了,会一直跑到score不再变化或者round=100的时候为止~

到此这篇关于Python机器学习应用之工业蒸汽数据分析篇详解的文章就介绍到这了,更多相关Python 工业蒸汽数据分析内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python在windows下实现备份程序实例
Jul 04 Python
pygame播放音乐的方法
May 19 Python
Python while、for、生成器、列表推导等语句的执行效率测试
Jun 03 Python
Python变量作用范围实例分析
Jul 07 Python
Python使用multiprocessing实现一个最简单的分布式作业调度系统
Mar 14 Python
python web框架学习笔记
May 03 Python
Python对多属性的重复数据去重实例
Apr 18 Python
对IPython交互模式下的退出方法详解
Feb 16 Python
Python实现FTP文件传输的实例
Jul 07 Python
python中取绝对值简单方法总结
Jul 24 Python
一篇文章搞懂python的转义字符及用法
Sep 03 Python
python 如何实现遗传算法
Sep 22 Python
用Python可视化新冠疫情数据
Python机器学习应用之基于线性判别模型的分类篇详解
68行Python代码实现带难度升级的贪吃蛇
Jan 18 #Python
如何利用Python实现n*n螺旋矩阵
Jan 18 #Python
聊聊Python String型列表求最值的问题
Jan 18 #Python
Python的三个重要函数详解
Jan 18 #Python
python多线程方法详解
Jan 18 #Python
You might like
CodeIgniter图像处理类的深入解析
2013/06/17 PHP
封装ThinkPHP的一个文件上传方法实例
2014/10/31 PHP
PHP中in_array函数使用的问题与解决办法
2016/09/11 PHP
类似框架的js代码
2006/11/09 Javascript
jqPlot Option配置对象详解
2009/07/25 Javascript
JQUERY操作JSON实例代码
2010/02/09 Javascript
两种简单实现菜单高亮显示的JS类代码
2010/06/27 Javascript
浅谈javascript的数据类型检测
2010/07/10 Javascript
从js向Action传中文参数出现乱码问题的解决方法
2013/12/29 Javascript
仿JQuery输写高效JSLite代码的一些技巧
2015/01/13 Javascript
JS+CSS实现自动改变切换方向图片幻灯切换效果的方法
2015/03/02 Javascript
JavaScript中逗号运算符介绍及使用示例
2015/03/13 Javascript
深入理解JS中的Function.prototype.bind()方法
2016/10/11 Javascript
微信小程序 radio单选框组件详解及实例代码
2017/01/10 Javascript
Bootstrap Table使用整理(三)
2017/06/09 Javascript
创建简单的node服务器实例(分享)
2017/06/23 Javascript
vue-cli3 DllPlugin 提取公用库的方法
2019/04/24 Javascript
javascript面向对象创建对象的方式小结
2019/07/29 Javascript
vue+elementUI(el-upload)图片压缩,默认同比例压缩操作
2020/08/10 Javascript
解决element-ui里的下拉多选框 el-select 时,默认值不可删除问题
2020/08/14 Javascript
vue实现顶部菜单栏
2020/11/08 Javascript
Python栈类实例分析
2015/06/15 Python
python实现简易版计算器
2020/06/22 Python
Python使用progressbar模块实现的显示进度条功能
2018/05/31 Python
Python List cmp()知识点总结
2019/02/18 Python
python反编译学习之字节码详解
2019/05/19 Python
Django框架model模型对象验证实现方法分析
2019/10/02 Python
python如何更新包
2020/06/11 Python
HTML5-WebSocket实现聊天室示例
2016/12/15 HTML / CSS
乌克兰网上珠宝商店:GoldSoveren
2020/03/31 全球购物
课程设计心得体会
2013/12/28 职场文书
激励口号大全
2014/06/17 职场文书
家长学校培训材料
2014/08/20 职场文书
2014年司法所工作总结
2014/11/22 职场文书
成绩单评语
2015/01/04 职场文书
运动会新闻稿
2015/07/17 职场文书