python之np.argmax()及对axis=0或者1的理解


Posted in Python onJune 02, 2021

对于np.argmax()让我迷惑了很久,尤其是其中的axis=1的比较结果。

一、np.argmax()的理解

1、最简单的例子

假定现在有一个数组a = [3, 1, 2, 4, 6, 1]现在要算数组a中最大数的索引是多少。最直接的思路,先假定第0个数最大,然后拿这个和后面的数比,找到大的就更新索引。代码如下

a = [3, 1, 2, 4, 6, 1]
maxindex = 0
i = 0
for tmp in a:
    if tmp > a[maxindex]:
        maxindex = i
    i += 1
print(maxindex)

这个问题可以帮助我们理解argmax.

2、函数的解释

一维数组

import numpy as np
a = np.array([3, 1, 2, 4, 6, 1])
print(np.argmax(a))

argmax返回的是最大数的索引.argmax有一个参数axis,默认是0,表示第几维的最大值。

二维数组

import numpy as np
a = np.array([[1, 5, 5, 2],
              [9, 6, 2, 8],
              [3, 7, 9, 1]])
print(np.argmax(a, axis=0))

为了描述方便,a就表示这个二维数组。np.argmax(a, axis=0)的含义是a[0][j],a[1][j],a[2]j中最大值的索引。从a[0][j]开始,最大值索引最初为(0,0,0,0),拿a[0][j]和a[1][j]作比较,9大于1,6大于5,8大于2,所以最大值索引由(0,0,0,0)更新为(1,1,0,1),再和a[2][j]作比较,7大于6,9大于5所以更新为(1,2,2,1)。

再分析下面的输出.

import numpy as np
a = np.array([[1, 5, 5, 2],
              [9, 6, 2, 8],
              [3, 7, 9, 1]])
print(np.argmax(a, axis=1))

np.argmax(a, axis=1)的含义是a[i][0],a[i][1],a[i][2],a[i]3中最大值的索引。从a[i][0]开始,a[i][0]对应的索引为(0,0,0),先假定它就是最大值索引(思路和上节简单例子完全一致)拿a[i][0]和a[i][1]作比较,5大于1,7大于3所以最大值索引由(0,0,0)更新为(1,0,1),再和a[i][2]作比较,9大于7,更新为(1,0,2),再和a[i][3]作比较,不用更新,最终值为(1,0,2)

三维数组

import numpy as np
a = np.array([
              [
                  [1, 5, 5, 2],
                  [9, -6, 2, 8],
                  [-3, 7, -9, 1]
              ],

              [
                  [-1, 5, -5, 2],
                  [9, 6, 2, 8],
                  [3, 7, 9, 1]
              ]
            ])
print(np.argmax(a, axis=0))

np.argmax(a, axis=0)的含义是a[0][j][k],a[1][j][k] (j=0,1,2,k=0,1,2,3)中最大值的索引。

从a[0][j][k]开始,a[0][j][k]对应的索引为((0,0,0,0),(0,0,0,0),(0,0,0,0)),拿a[0][j][k]和a[1][j][k]对应项作比较6大于-6,3大于-3,9大于-9,所以更新这几个位置的索引,将((0,0,0,0),(0,0,0,0),(0,0,0,0))更新为((0,0,0,0),(0,1,0,0),(1,0,1,0)).。

再看axis=1的情况

import numpy as np
a = np.array([
              [
                  [1, 5, 5, 2],
                  [9, -6, 2, 8],
                  [-3, 7, -9, 1]
              ],

              [
                  [-1, 5, -5, 2],
                  [9, 6, 2, 8],
                  [3, 7, 9, 1]
              ]
            ])
print(np.argmax(a, axis=1))

np.argmax(a, axis=1)的含义是a[i][0][k],a[i][1][k] (i=0,1,k=0,1,2,3)中最大值的索引。从a[i][0][k]开始,a[i][0][k]对应的索引为((0,0,0,0),(0,0,0,0)),拿a[i][0][k]和a[i][1][k]对应项作比较,9大于1,8大于2,9大于-1,6大于5,2大于-5,8大于2,所以更新这几个位置的索引,将((0,0,0,0),(0,0,0,0))更新为((1,0,0,1),(1,1,1,1)),现在最大值对应的数组为((9,5,5,8),(9,6,2,8))。

再拿((9,5,5,8),(9,6,2,8))和a[i][2][k]对应项从比较,7大于5,7大于6,9大于2.更新这几个位置的索引。

将((1,0,0,1),(1,1,1,1))更新为((1,2,0,1),(1,2,2,1)).axis=2的情况也是类似的。

二、关于axis的理解

设置axis的主要原因是方便我们进行多个维度的计算。

通过例子来进行理解

比如:

a = np.array([[1, 2, 3], 
     [2, 3, 4], 
     [5, 4, 3], 
     [8, 7, 2]])
np.argmax(a, 0)   #输出:array([3, 3, 1]
np.argmax(a, 1)   #输出:array([2, 2, 0, 0]

axis = 0:

你就这么想,0是最大的范围,所有的数组都要进行比较,只是比较的是这些数组相同位置上的数(我的理解是0 列比较输出):

a[0] = array([1, 2, 3])
a[1] = array([2, 3, 4])
a[2] = array([5, 4, 3])
a[3] = array([8, 7, 2])
# output : [3, 3, 1]

axis = 1: (行比较输出)

等于1的时候,比较范围缩小了,只会比较每个数组内的数的大小,结果也会根据有几个数组,产生几个结果。

a[0] = array([1, 2, 3]) #2
a[1] = array([2, 3, 4]) #2
a[2] = array([5, 4, 3]) #0
a[3] = array([8, 7, 2]) #0

特例

这是里面都是数组长度一致的情况,如果不一致,axis最大值为最小的数组长度-1,超过则报错。

当不一致的时候,axis=0的比较也就变成了每个数组的和的比较。

比较示例如下

当数组长度都一样时

import numpy as np
a = np.array([
              [
                  [1, 5, 5, 2],
                  [9, -6, 2, 8],
                  [-3, 7, -9, 1]
              ],

              [
                  [-1, 5, -5, 2],
                  [9, 6, 2, 8],
                  [3, 7, 9,1]
              ]
            ])
print(np.argmax(a, axis=0))
print(np.argmax(a, axis=1))

输出为

[[0 0 0 0]
[0 1 0 0]
[1 0 1 0]]
[[1 2 0 1]

[1 2 2 1]]

当数组长度都不一样时,

a = np.array([
                  [
                      [1, 5, 5, 2],
                      [9, -6, 2, 8],
                      [-3, 7, -9, 1]
                  ],
    
                  [
                      [-1, 5, -5, 2],
                      [9, 6, 2, 8],
                      [3, 7, 9]
                  ]
                ])
    print(np.argmax(a, axis=0))
 print(np.argmax(a, axis=1))

输出为

[0 1 1]
[1 1]

numpy 的argmax的参数axis=0/1的概念

对numpy的argmax一直记不得默认是行还是列搜索,总是用糊涂,每次都要查资料,今天突然醒悟。

先列后行,为什么呢?

看下面的一个列表,就知道了。

>>b=np.array([1, 2, 3, 4, 3, 2, 1])
>>np.argmax(b)
>>3
>>np.argmax(b, axis=0)
>>3

默认axis=0,列表只有一个维度,自然就是一行数据的最大数的索引。

那么对于二维向量,只需要记住axis是坐标轴的方向,不是行列的概念。

在Numpy库中:

轴用来为超过一维的数组定义的属性,二维数据拥有两个轴:

第0轴沿着行的垂直往下,第1轴沿着列的方向水平延伸。简单的来记就是axis=0代表往跨行(down),而axis=1代表跨列(across)。

所以axis=0代表的就是列查找,axis=1代表着行查找。

python之np.argmax()及对axis=0或者1的理解

>>a = np.array([[1, 5, 5, 2],
               [9, 6, 2, 8],
               [3, 7, 9, 1]])
>>np.argmax(a,axis=0)
>>array([1, 2, 2, 1], dtype=int64)
>>np.argmax(a,axis=1)
>>array([1, 0, 2], dtype=int64)

结论:

argmax返回的是最大数的索引。argmax有一个参数axis,默认是0,表示每一列的最大值的索引,axis=1表示每一行的最大值的索引。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
简单谈谈python中的Queue与多进程
Aug 25 Python
python matplotlib画图实例代码分享
Dec 27 Python
python简易远程控制单线程版
Jun 20 Python
python 定义给定初值或长度的list方法
Jun 23 Python
对Python3.x版本print函数左右对齐详解
Dec 22 Python
详解用python写一个抽奖程序
May 10 Python
Django Rest framework认证组件详细用法
Jul 25 Python
如何使用Python多线程测试并发漏洞
Dec 18 Python
Python requests上传文件实现步骤
Sep 15 Python
关于python中导入文件到list的问题
Oct 31 Python
用 python 进行微信好友信息分析
Nov 28 Python
Python 内存管理机制全面分析
Jan 16 Python
Python import模块的缓存问题解决方案
Jun 02 #Python
Python3 类型标注支持操作
Jun 02 #Python
python 实现两个变量值进行交换的n种操作
聊聊Python中关于a=[[]]*3的反思
python内置进制转换函数的操作
Jun 02 #Python
Python 内置函数速查表一览
Jun 02 #Python
利用Python判断你的密码难度等级
Jun 02 #Python
You might like
php上传、管理照片示例
2006/10/09 PHP
使用 MySQL Date/Time 类型
2008/03/26 PHP
函数中使用require_once问题深入探讨 优雅的配置文件定义方法推荐
2014/07/02 PHP
基于GD2图形库的PHP生成图片缩略图类代码分享
2015/02/08 PHP
PHP创建XML接口示例
2019/07/04 PHP
javascript+xml技术实现分页浏览
2008/07/27 Javascript
js 操作符实例代码
2009/10/24 Javascript
Jquery 数据选择插件Pickerbox使用介绍
2012/08/24 Javascript
jquery+json实现数据列表分页示例代码
2013/11/15 Javascript
基于jquery实现发送文章到手机的代码
2014/12/26 Javascript
JavaScript判断字符长度、数字、Email、电话等常用判断函数分享
2015/04/01 Javascript
适用于javascript开发者的Processing.js入门教程
2016/02/24 Javascript
基于JavaScript实现屏幕滚动效果
2017/01/18 Javascript
Bootstrap中glyphicons-halflings-regular.woff字体报404错notfound的解决方法
2017/01/19 Javascript
js操作浏览器的参数方法
2017/01/21 Javascript
JavaScript代码实现txt文件的上传预览功能
2018/03/27 Javascript
原生JS实现旋转轮播图+文字内容切换效果【附源码】
2018/09/29 Javascript
jquery3和layui冲突导致使用layui.layer.full弹出全屏iframe窗口时高度152px问题
2019/05/12 jQuery
Vuex的实战使用详解
2019/10/31 Javascript
vue实现分页的三种效果
2020/06/23 Javascript
[44:40]Serenity vs Pain 2018国际邀请赛小组赛BO2 第一场 8.19
2018/08/21 DOTA
Python 专题四 文件基础知识
2017/03/20 Python
flask框架中勾子函数的使用详解
2018/08/01 Python
django解决跨域请求的问题
2018/11/11 Python
tensorflow中tf.slice和tf.gather切片函数的使用
2020/01/19 Python
HTML5+JS实现俄罗斯方块原理及具体步骤
2013/11/29 HTML / CSS
拉斯维加斯城市观光通行证:Las Vegas Pass
2019/05/21 全球购物
耐克波兰官方网站:Nike波兰
2019/09/03 全球购物
意大利网上购书网站:Libraccio.it
2021/02/03 全球购物
父母寄语大全
2014/04/12 职场文书
小学国庆节活动总结
2015/03/23 职场文书
公司财务经理岗位职责
2015/04/08 职场文书
教师节老师寄语
2015/05/28 职场文书
uniapp开发小程序的经验总结
2021/04/08 Javascript
angular4实现带搜索的下拉框
2022/03/25 Javascript
使用python生成大量数据写入es数据库并查询操作(2)
2022/09/23 Python