python之np.argmax()及对axis=0或者1的理解


Posted in Python onJune 02, 2021

对于np.argmax()让我迷惑了很久,尤其是其中的axis=1的比较结果。

一、np.argmax()的理解

1、最简单的例子

假定现在有一个数组a = [3, 1, 2, 4, 6, 1]现在要算数组a中最大数的索引是多少。最直接的思路,先假定第0个数最大,然后拿这个和后面的数比,找到大的就更新索引。代码如下

a = [3, 1, 2, 4, 6, 1]
maxindex = 0
i = 0
for tmp in a:
    if tmp > a[maxindex]:
        maxindex = i
    i += 1
print(maxindex)

这个问题可以帮助我们理解argmax.

2、函数的解释

一维数组

import numpy as np
a = np.array([3, 1, 2, 4, 6, 1])
print(np.argmax(a))

argmax返回的是最大数的索引.argmax有一个参数axis,默认是0,表示第几维的最大值。

二维数组

import numpy as np
a = np.array([[1, 5, 5, 2],
              [9, 6, 2, 8],
              [3, 7, 9, 1]])
print(np.argmax(a, axis=0))

为了描述方便,a就表示这个二维数组。np.argmax(a, axis=0)的含义是a[0][j],a[1][j],a[2]j中最大值的索引。从a[0][j]开始,最大值索引最初为(0,0,0,0),拿a[0][j]和a[1][j]作比较,9大于1,6大于5,8大于2,所以最大值索引由(0,0,0,0)更新为(1,1,0,1),再和a[2][j]作比较,7大于6,9大于5所以更新为(1,2,2,1)。

再分析下面的输出.

import numpy as np
a = np.array([[1, 5, 5, 2],
              [9, 6, 2, 8],
              [3, 7, 9, 1]])
print(np.argmax(a, axis=1))

np.argmax(a, axis=1)的含义是a[i][0],a[i][1],a[i][2],a[i]3中最大值的索引。从a[i][0]开始,a[i][0]对应的索引为(0,0,0),先假定它就是最大值索引(思路和上节简单例子完全一致)拿a[i][0]和a[i][1]作比较,5大于1,7大于3所以最大值索引由(0,0,0)更新为(1,0,1),再和a[i][2]作比较,9大于7,更新为(1,0,2),再和a[i][3]作比较,不用更新,最终值为(1,0,2)

三维数组

import numpy as np
a = np.array([
              [
                  [1, 5, 5, 2],
                  [9, -6, 2, 8],
                  [-3, 7, -9, 1]
              ],

              [
                  [-1, 5, -5, 2],
                  [9, 6, 2, 8],
                  [3, 7, 9, 1]
              ]
            ])
print(np.argmax(a, axis=0))

np.argmax(a, axis=0)的含义是a[0][j][k],a[1][j][k] (j=0,1,2,k=0,1,2,3)中最大值的索引。

从a[0][j][k]开始,a[0][j][k]对应的索引为((0,0,0,0),(0,0,0,0),(0,0,0,0)),拿a[0][j][k]和a[1][j][k]对应项作比较6大于-6,3大于-3,9大于-9,所以更新这几个位置的索引,将((0,0,0,0),(0,0,0,0),(0,0,0,0))更新为((0,0,0,0),(0,1,0,0),(1,0,1,0)).。

再看axis=1的情况

import numpy as np
a = np.array([
              [
                  [1, 5, 5, 2],
                  [9, -6, 2, 8],
                  [-3, 7, -9, 1]
              ],

              [
                  [-1, 5, -5, 2],
                  [9, 6, 2, 8],
                  [3, 7, 9, 1]
              ]
            ])
print(np.argmax(a, axis=1))

np.argmax(a, axis=1)的含义是a[i][0][k],a[i][1][k] (i=0,1,k=0,1,2,3)中最大值的索引。从a[i][0][k]开始,a[i][0][k]对应的索引为((0,0,0,0),(0,0,0,0)),拿a[i][0][k]和a[i][1][k]对应项作比较,9大于1,8大于2,9大于-1,6大于5,2大于-5,8大于2,所以更新这几个位置的索引,将((0,0,0,0),(0,0,0,0))更新为((1,0,0,1),(1,1,1,1)),现在最大值对应的数组为((9,5,5,8),(9,6,2,8))。

再拿((9,5,5,8),(9,6,2,8))和a[i][2][k]对应项从比较,7大于5,7大于6,9大于2.更新这几个位置的索引。

将((1,0,0,1),(1,1,1,1))更新为((1,2,0,1),(1,2,2,1)).axis=2的情况也是类似的。

二、关于axis的理解

设置axis的主要原因是方便我们进行多个维度的计算。

通过例子来进行理解

比如:

a = np.array([[1, 2, 3], 
     [2, 3, 4], 
     [5, 4, 3], 
     [8, 7, 2]])
np.argmax(a, 0)   #输出:array([3, 3, 1]
np.argmax(a, 1)   #输出:array([2, 2, 0, 0]

axis = 0:

你就这么想,0是最大的范围,所有的数组都要进行比较,只是比较的是这些数组相同位置上的数(我的理解是0 列比较输出):

a[0] = array([1, 2, 3])
a[1] = array([2, 3, 4])
a[2] = array([5, 4, 3])
a[3] = array([8, 7, 2])
# output : [3, 3, 1]

axis = 1: (行比较输出)

等于1的时候,比较范围缩小了,只会比较每个数组内的数的大小,结果也会根据有几个数组,产生几个结果。

a[0] = array([1, 2, 3]) #2
a[1] = array([2, 3, 4]) #2
a[2] = array([5, 4, 3]) #0
a[3] = array([8, 7, 2]) #0

特例

这是里面都是数组长度一致的情况,如果不一致,axis最大值为最小的数组长度-1,超过则报错。

当不一致的时候,axis=0的比较也就变成了每个数组的和的比较。

比较示例如下

当数组长度都一样时

import numpy as np
a = np.array([
              [
                  [1, 5, 5, 2],
                  [9, -6, 2, 8],
                  [-3, 7, -9, 1]
              ],

              [
                  [-1, 5, -5, 2],
                  [9, 6, 2, 8],
                  [3, 7, 9,1]
              ]
            ])
print(np.argmax(a, axis=0))
print(np.argmax(a, axis=1))

输出为

[[0 0 0 0]
[0 1 0 0]
[1 0 1 0]]
[[1 2 0 1]

[1 2 2 1]]

当数组长度都不一样时,

a = np.array([
                  [
                      [1, 5, 5, 2],
                      [9, -6, 2, 8],
                      [-3, 7, -9, 1]
                  ],
    
                  [
                      [-1, 5, -5, 2],
                      [9, 6, 2, 8],
                      [3, 7, 9]
                  ]
                ])
    print(np.argmax(a, axis=0))
 print(np.argmax(a, axis=1))

输出为

[0 1 1]
[1 1]

numpy 的argmax的参数axis=0/1的概念

对numpy的argmax一直记不得默认是行还是列搜索,总是用糊涂,每次都要查资料,今天突然醒悟。

先列后行,为什么呢?

看下面的一个列表,就知道了。

>>b=np.array([1, 2, 3, 4, 3, 2, 1])
>>np.argmax(b)
>>3
>>np.argmax(b, axis=0)
>>3

默认axis=0,列表只有一个维度,自然就是一行数据的最大数的索引。

那么对于二维向量,只需要记住axis是坐标轴的方向,不是行列的概念。

在Numpy库中:

轴用来为超过一维的数组定义的属性,二维数据拥有两个轴:

第0轴沿着行的垂直往下,第1轴沿着列的方向水平延伸。简单的来记就是axis=0代表往跨行(down),而axis=1代表跨列(across)。

所以axis=0代表的就是列查找,axis=1代表着行查找。

python之np.argmax()及对axis=0或者1的理解

>>a = np.array([[1, 5, 5, 2],
               [9, 6, 2, 8],
               [3, 7, 9, 1]])
>>np.argmax(a,axis=0)
>>array([1, 2, 2, 1], dtype=int64)
>>np.argmax(a,axis=1)
>>array([1, 0, 2], dtype=int64)

结论:

argmax返回的是最大数的索引。argmax有一个参数axis,默认是0,表示每一列的最大值的索引,axis=1表示每一行的最大值的索引。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现随机密码字典生成器示例
Apr 09 Python
Python3.5 创建文件的简单实例
Apr 26 Python
tensorflow saver 保存和恢复指定 tensor的实例讲解
Jul 26 Python
Django添加sitemap的方法示例
Aug 06 Python
python批量识别图片指定区域文字内容
Apr 30 Python
树莓派动作捕捉抓拍存储图像脚本
Jun 22 Python
PyTorch的深度学习入门教程之构建神经网络
Jun 27 Python
深入了解Python枚举类型的相关知识
Jul 09 Python
基于python3 的百度图片下载器的实现代码
Nov 05 Python
PYQT5 vscode联合操作qtdesigner的方法
Mar 24 Python
Django 解决阿里云部署同步数据库报错的问题
May 14 Python
Pytorch中TensorBoard及torchsummary的使用详解
May 12 Python
Python import模块的缓存问题解决方案
Jun 02 #Python
Python3 类型标注支持操作
Jun 02 #Python
python 实现两个变量值进行交换的n种操作
聊聊Python中关于a=[[]]*3的反思
python内置进制转换函数的操作
Jun 02 #Python
Python 内置函数速查表一览
Jun 02 #Python
利用Python判断你的密码难度等级
Jun 02 #Python
You might like
重料打造自己的“宝马”---第三代
2021/03/02 无线电
php实现通用的信用卡验证类
2015/03/24 PHP
ThinkPHP实现转换数据库查询结果数据到对应类型的方法
2017/11/16 PHP
ThinkPHP中图片按比例切割的代码实例
2019/03/08 PHP
滚动经典最新话题[prototype框架]下编写
2006/10/03 Javascript
Javascript实例教程(19) 使用HoTMetal(6)
2006/12/23 Javascript
正则表达式搭配js轻松处理json文本方便而老古
2013/02/17 Javascript
jquery创建表格(自动增加表格)代码分享
2013/12/25 Javascript
Visual Studio中js调试的方法图解
2014/06/30 Javascript
JS+CSS实现仿新浪微博搜索框的方法
2015/02/24 Javascript
JavaScript生成随机数的4种自定义函数分享
2015/02/28 Javascript
js滚动条平滑移动示例代码
2016/03/29 Javascript
Node.js+Express配置入门教程
2016/05/19 Javascript
Vue组件之极简的地址选择器的实现
2018/05/31 Javascript
微信小程序淘宝首页双排图片布局排版代码(推荐)
2020/10/29 Javascript
javascript实现放大镜功能
2020/12/09 Javascript
[48:47]VGJ.S vs NB 2018国际邀请赛小组赛BO2 第一场 8.18
2018/08/19 DOTA
[03:12]完美世界DOTA2联赛PWL DAY9集锦
2020/11/10 DOTA
python 中文字符串的处理实现代码
2009/10/25 Python
python实现在sqlite动态创建表的方法
2015/05/08 Python
浅谈python中字典append 到list 后值的改变问题
2018/05/04 Python
详解Python with/as使用说明
2018/12/13 Python
详解Python3 基本数据类型
2019/04/19 Python
python 并发编程 非阻塞IO模型原理解析
2019/08/20 Python
Python matplotlib读取excel数据并用for循环画多个子图subplot操作
2020/07/14 Python
html5在移动端的屏幕适应问题示例探讨
2014/06/15 HTML / CSS
俄罗斯金苹果网上化妆品和香水商店:Goldapple
2019/12/01 全球购物
大学毕业生通用自我评价
2014/01/05 职场文书
个人评语大全
2014/05/04 职场文书
国贸专业毕业求职信
2014/06/11 职场文书
临床专业自荐信
2014/06/22 职场文书
2014年人民调解工作总结
2014/12/08 职场文书
2015年先进个人自荐书
2015/03/24 职场文书
2015年置业顾问工作总结
2015/04/07 职场文书
《我要的是葫芦》教学反思
2016/02/18 职场文书
golang json数组拼接的实例
2021/04/28 Golang