Python与C/C++的相互调用案例


Posted in Python onMarch 04, 2021

一、问题

Python模块和C/C++的动态库间相互调用在实际的应用中会有所涉及,在此作一总结。

二、Python调用C/C++

1、Python调用C动态链接库

Python调用C库比较简单,不经过任何封装打包成so,再使用python的ctypes调用即可。

(1)C语言文件:pycall.c

/***gcc -o libpycall.so -shared -fPIC pycall.c*/
#include <stdio.h>
#include <stdlib.h>
int foo(int a, int b)
{
 printf("you input %d and %d\n", a, b);
 return a+b;
}

(2)gcc编译生成动态库libpycall.so:gcc -o libpycall.so -shared -fPIC pycall.c。使用g++编译生成C动态库的代码中的函数或者方法时,需要使用extern "C"来进行编译。

(3)Python调用动态库的文件:pycall.py

import ctypes
ll = ctypes.cdll.LoadLibrary 
lib = ll("./libpycall.so") 
lib.foo(1, 3)
print '***finish***'

(4)运行结果:

Python与C/C++的相互调用案例

2、Python调用C++(类)动态链接库

需要extern "C"来辅助,也就是说还是只能调用C函数,不能直接调用方法,但是能解析C++方法。不是用extern "C",构建后的动态链接库没有这些函数的符号表。

(1)C++类文件:pycallclass.cpp

#include <iostream>
using namespace std;
 
class TestLib
{
 public:
  void display();
  void display(int a);
};
void TestLib::display() {
 cout<<"First display"<<endl;
}
void TestLib::display(int a) {
 cout<<"Second display:"<<a<<endl;
}
extern "C" {
 TestLib obj;
 void display() {
  obj.display(); 
  }
 void display_int() {
  obj.display(2); 
  }
}

(2)g++编译生成动态库libpycall.so:g++ -o libpycallclass.so -shared -fPIC pycallclass.cpp。

(3)Python调用动态库的文件:pycallclass.py

import ctypes
so = ctypes.cdll.LoadLibrary 
lib = so("./libpycallclass.so") 
print 'display()'
lib.display()
print 'display(100)'
lib.display_int(100)

(4)运行结果:

Python与C/C++的相互调用案例

3、Python调用C/C++可执行程序

(1)C/C++程序:main.cpp

#include <iostream>
using namespace std;
int test()
{
 int a = 10, b = 5;
 return a+b;
}
int main()
{
 cout<<"---begin---"<<endl;
 int num = test();
 cout<<"num="<<num<<endl;
 cout<<"---end---"<<endl;
}

(2)编译成二进制可执行文件:g++ -o testmain main.cpp。

(3) Python调用程序:main.py

import commands
import os
main = "./testmain"
if os.path.exists(main):
 rc, out = commands.getstatusoutput(main)
 print 'rc = %d, \nout = %s' % (rc, out)
 
print '*'*10
f = os.popen(main) 
data = f.readlines() 
f.close() 
print data
 
print '*'*10
os.system(main)

(4)运行结果:

Python与C/C++的相互调用案例

4、扩展Python(C++为Python编写扩展模块)

所有能被整合或导入到其它python脚本的代码,都可以被称为扩展。可以用Python来写扩展,也可以用C和C++之类的编译型的语言来写扩展。Python在设计之初就考虑到要让模块的导入机制足够抽象。抽象到让使用模块的代码无法了解到模块的具体实现细节。Python的可扩展性具有的优点:方便为语言增加新功能、具有可定制性、代码可以实现复用等。

为 Python 创建扩展需要三个主要的步骤:创建应用程序代码、利用样板来包装代码和编译与测试。

(1)创建应用程序代码

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
 
int fac(int n)
{
 if (n < 2) return(1); /* 0! == 1! == 1 */
 return (n)*fac(n-1); /* n! == n*(n-1)! */
}
char *reverse(char *s)
{
 register char t,     /* tmp */
   *p = s,      /* fwd */
   *q = (s + (strlen(s) - 1)); /* bwd */
 while (p < q)    /* if p < q */
 {
  t = *p;   /* swap & move ptrs */
  *p++ = *q;
  *q-- = t;
 }
 return(s);
}
int main()
{
 char s[BUFSIZ];
 printf("4! == %d\n", fac(4));
 printf("8! == %d\n", fac(8));
 printf("12! == %d\n", fac(12));
 strcpy(s, "abcdef");
 printf("reversing 'abcdef', we get '%s'\n", \
  reverse(s));
 strcpy(s, "madam");
 printf("reversing 'madam', we get '%s'\n", \
  reverse(s));
 return 0;
}

上述代码中有两个函数,一个是递归求阶乘的函数fac();另一个reverse()函数实现了一个简单的字符串反转算法,其主要目的是修改传入的字符串,使其内容完全反转,但不需要申请内存后反着复制的方法。

(2)用样板来包装代码

接口的代码被称为“样板”代码,它是 应用程序代码与Python解释器之间进行交互所必不可少的一部分。样板主要分为4步:a、包含Python的头文件;b、为每个模块的每一个函数增加一个型如PyObject* Module_func()的包装函数;c、为每个模块增加一个型如PyMethodDef ModuleMethods[]的数组;d、增加模块初始化函数void initModule()。

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
 
int fac(int n)
{
 if (n < 2) return(1);
 return (n)*fac(n-1);
}
char *reverse(char *s)
{
 register char t,
   *p = s,
   *q = (s + (strlen(s) - 1));
 while (s && (p < q))
 {
  t = *p;
  *p++ = *q;
  *q-- = t;
 }
 return(s);
}
int test()
{
 char s[BUFSIZ];
 printf("4! == %d\n", fac(4));
 printf("8! == %d\n", fac(8));
 printf("12! == %d\n", fac(12));
 strcpy(s, "abcdef");
 printf("reversing 'abcdef', we get '%s'\n", \
  reverse(s));
 strcpy(s, "madam");
 printf("reversing 'madam', we get '%s'\n", \
  reverse(s));
 return 0;
}
#include "Python.h"
static PyObject *
Extest_fac(PyObject *self, PyObject *args)
{
 int num;
 if (!PyArg_ParseTuple(args, "i", &num))
  return NULL;
 return (PyObject*)Py_BuildValue("i", fac(num));
}
static PyObject *
Extest_doppel(PyObject *self, PyObject *args)
{
 char *orig_str;
 char *dupe_str;
 PyObject* retval;
 if (!PyArg_ParseTuple(args, "s", &orig_str))
  return NULL;
 retval = (PyObject*)Py_BuildValue("ss", orig_str,
  dupe_str=reverse(strdup(orig_str)));
 free(dupe_str);    #防止内存泄漏
 return retval;
}
static PyObject *
Extest_test(PyObject *self, PyObject *args)
{
 test();
 return (PyObject*)Py_BuildValue("");
}
static PyMethodDef
ExtestMethods[] =
{
 { "fac", Extest_fac, METH_VARARGS },
 { "doppel", Extest_doppel, METH_VARARGS },
 { "test", Extest_test, METH_VARARGS },
 { NULL, NULL },
};
void initExtest()
{
 Py_InitModule("Extest", ExtestMethods);
}

Python.h头文件在大多数类Unix系统中会在/usr/local/include/python2.x或/usr/include/python2.x目录中,系统一般都会知道文件安装的路径。

增加包装函数,所在模块名为Extest,那么创建一个包装函数叫Extest_fac(),在Python脚本中使用是先import Extest,然后调用Extest.fac(),当 Extest.fac()被调用时,包装函数 Extest_fac()会被调用,包装函数接受一个 Python的整数参数,把它转为C的整数,然后调用C的fac()函数,得到一个整型的返回值,最后把这个返回值转为Python的整型数做为整个函数调用的结果返回回去。其他两个包装函数Extest_doppel()和Extest_test()类似。

从Python到C的转换用PyArg_Parse*系列函数, int PyArg_ParseTuple():把Python传过来的参数转为C;int PyArg_ParseTupleAndKeywords()与PyArg_ParseTuple()作用相同,但是同时解析关键字参数;它们 的用法跟C的sscanf函数很像,都接受一个字符串流,并根据一个指定的格式字符串进行解析,把结果放入到相应的指针所指的变量中去,它们的返回值为1表示解析成功,返回值为0表示失败。 从C到Python的转换函数是PyObject* Py_BuildValue():把C的数据转为Python的一个对象或一组对象,然后返回之;Py_BuildValue的用法跟sprintf很像,把所有的参数按格式字符串所指定的格式转换成一个Python的对象。

C与Python之间数据转换的转换代码:

Python与C/C++的相互调用案例

为每个模块增加一个型如PyMethodDef ModuleMethods[]的数组,以便于Python解释器能够导入并调用它们,每一个数组都包含了函数在Python中的名字,相应的包装函数的名字以及一个METH_VARARGS常量,METH_VARARGS表示参数以tuple形式传入。 若需要使用 PyArg_ParseTupleAndKeywords()函数来分析命名参数的话,还需要让这个标志常量与METH_KEYWORDS常量进行逻辑与运算常量 。数组最后用两个NULL来表示函数信息列表的结束。

所有工作的最后一部分就是模块的初始化函数,调用Py_InitModule()函数,并把模块名和ModuleMethods[]数组的名字传递进去,以便于解释器能正确的调用模块中的函数。

(3)编译

为了让新Python的扩展能被创建,需要把它们与Python库放在一起编译,distutils包被用来编译、安装和分发这些模块、扩展和包。

创建一个setup.py 文件,编译最主要的工作由setup()函数来完成:

#!/usr/bin/env python 
from distutils.core import setup, Extension 
MOD = 'Extest'
setup(name=MOD, ext_modules=[Extension(MOD, sources=['Extest2.c'])])

Extension()第一个参数是(完整的)扩展的名字,如果模块是包的一部分的话,还要加上用'.'分隔的完整的包的名字。上述的扩展是独立的,所以名字只要写"Extest"就行;sources参数是所有源代码的文件列表,只有一个文件Extest2.c。setup需要两个参数:一个名字参数表示要编译哪个内容;另一个列表参数列出要编译的对象,上述要编译的是一个扩展,故把ext_modules参数的值设为扩展模块的列表。

运行setup.py build命令就可以开始编译我们的扩展了,提示部分信息:

creating build/lib.linux-x86_64-2.6
gcc -pthread -shared build/temp.linux-x86_64-2.6/Extest2.o -L/usr/lib64 -lpython2.6 -o build/lib.linux-x86_64-2.6/Extest.so

(4)导入和测试

你的扩展会被创建在运行setup.py脚本所在目录下的build/lib.*目录中,可以切换到那个目录中来测试模块,或者也可以用命令把它安装到Python中:python setup.py install,会提示相应信息。

测试模块:

Python与C/C++的相互调用案例

(5)引用计数和线程安全

Python对象引用计数的宏:Py_INCREF(obj)增加对象obj的引用计数,Py_DECREF(obj)减少对象obj的引用计数。Py_INCREF()和Py_DECREF()两个函数也有一个先检查对象是否为空的版本,分别为Py_XINCREF()和Py_XDECREF()。

编译扩展的程序员必须要注意,代码有可能会被运行在一个多线程的Python环境中。这些线程使用了两个C宏Py_BEGIN_ALLOW_THREADS和Py_END_ALLOW_THREADS, 通过将代码和线程隔离,保证了运行和非运行时的安全性,由这些宏包裹的代码将会允许其他线程的运行。

三、C/C++调用Python

C++可以调用Python脚本,那么就可以写一些Python的脚本接口供C++调用了,至少可以把Python当成文本形式的动态链接库,

需要的时候还可以改一改,只要不改变接口。缺点是C++的程序一旦编译好了,再改就没那么方便了。

(1)Python脚本:pytest.py

#test function
def add(a,b):
 print "in python function add"
 print "a = " + str(a)
 print "b = " + str(b)
 print "ret = " + str(a+b)
 return
 
def foo(a):
 
 print "in python function foo"
 print "a = " + str(a)
 print "ret = " + str(a * a)
 return 
 
class guestlist:
 def __init__(self):
  print "aaaa"
 def p():
 print "bbbbb"
 def __getitem__(self, id):
 return "ccccc"
def update():
 guest = guestlist()
 print guest['aa']
 
#update()

(2)C++代码:

/**g++ -o callpy callpy.cpp -I/usr/include/python2.6 -L/usr/lib64/python2.6/config -lpython2.6**/
#include <Python.h>
int main(int argc, char** argv)
{
 // 初始化Python
 //在使用Python系统前,必须使用Py_Initialize对其
 //进行初始化。它会载入Python的内建模块并添加系统路
 //径到模块搜索路径中。这个函数没有返回值,检查系统
 //是否初始化成功需要使用Py_IsInitialized。
 Py_Initialize();
 
 // 检查初始化是否成功
 if ( !Py_IsInitialized() ) {
  return -1;
 }
 // 添加当前路径
 //把输入的字符串作为Python代码直接运行,返回0
 //表示成功,-1表示有错。大多时候错误都是因为字符串
 //中有语法错误。
 PyRun_SimpleString("import sys");
 PyRun_SimpleString("print '---import sys---'"); 
 PyRun_SimpleString("sys.path.append('./')");
 PyObject *pName,*pModule,*pDict,*pFunc,*pArgs;
 
 // 载入名为pytest的脚本
 pName = PyString_FromString("pytest");
 pModule = PyImport_Import(pName);
 if ( !pModule ) {
  printf("can't find pytest.py");
  getchar();
  return -1;
 }
 pDict = PyModule_GetDict(pModule);
 if ( !pDict ) {
  return -1;
 }
 
 // 找出函数名为add的函数
 printf("----------------------\n");
 pFunc = PyDict_GetItemString(pDict, "add");
 if ( !pFunc || !PyCallable_Check(pFunc) ) {
  printf("can't find function [add]");
  getchar();
  return -1;
  }
 
 // 参数进栈
 PyObject *pArgs;
 pArgs = PyTuple_New(2);
 
 // PyObject* Py_BuildValue(char *format, ...)
 // 把C++的变量转换成一个Python对象。当需要从
 // C++传递变量到Python时,就会使用这个函数。此函数
 // 有点类似C的printf,但格式不同。常用的格式有
 // s 表示字符串,
 // i 表示整型变量,
 // f 表示浮点数,
 // O 表示一个Python对象。
 
 PyTuple_SetItem(pArgs, 0, Py_BuildValue("l",3));
 PyTuple_SetItem(pArgs, 1, Py_BuildValue("l",4));
 
 // 调用Python函数
 PyObject_CallObject(pFunc, pArgs);
 
 //下面这段是查找函数foo 并执行foo
 printf("----------------------\n");
 pFunc = PyDict_GetItemString(pDict, "foo");
 if ( !pFunc || !PyCallable_Check(pFunc) ) {
  printf("can't find function [foo]");
  getchar();
  return -1;
  }
 
 pArgs = PyTuple_New(1);
 PyTuple_SetItem(pArgs, 0, Py_BuildValue("l",2)); 
 
 PyObject_CallObject(pFunc, pArgs);
  
 printf("----------------------\n");
 pFunc = PyDict_GetItemString(pDict, "update");
 if ( !pFunc || !PyCallable_Check(pFunc) ) {
  printf("can't find function [update]");
  getchar();
  return -1;
  }
 pArgs = PyTuple_New(0);
 PyTuple_SetItem(pArgs, 0, Py_BuildValue(""));
 PyObject_CallObject(pFunc, pArgs);  
 
 Py_DECREF(pName);
 Py_DECREF(pArgs);
 Py_DECREF(pModule);
 
 // 关闭Python
 Py_Finalize();
 return 0;
}

(3)C++编译成二进制可执行文件:g++ -o callpy callpy.cpp -I/usr/include/python2.6 -L/usr/lib64/python2.6/config -lpython2.6,编译选项需要手动指定Python的include路径和链接接路径(Python版本号根据具体情况而定)。

(4)运行结果:

Python与C/C++的相互调用案例

四、总结

(1)Python和C/C++的相互调用仅是测试代码,具体的项目开发还得参考Python的API文档。

(2)两者交互,C++可为Python编写扩展模块,Python也可为C++提供脚本接口,更加方便于实际应用。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。如有错误或未考虑完全的地方,望不吝赐教。

Python 相关文章推荐
Python高级应用实例对比:高效计算大文件中的最长行的长度
Jun 08 Python
Python实现队列的方法
May 26 Python
Java中重定向输出流实现用文件记录程序日志
Jun 12 Python
python实现对求解最长回文子串的动态规划算法
Jun 02 Python
python实战串口助手_解决8串口多个发送的问题
Jun 12 Python
PyQt5多线程刷新界面防假死示例
Dec 13 Python
基于Python实现简单学生管理系统
Jul 24 Python
Django DRF APIView源码运行流程详解
Aug 17 Python
python 输入字符串生成所有有效的IP地址(LeetCode 93号题)
Oct 15 Python
python 使用xlsxwriter循环向excel中插入数据和图片的操作
Jan 01 Python
opencv实现图像几何变换
Mar 24 Python
如何使用Python实现一个简易的ORM模型
May 12 Python
解决Python import .pyd 可能遇到路径的问题
Mar 04 #Python
关于PySnooper 永远不要使用print进行调试的问题
Mar 04 #Python
pip/anaconda修改镜像源,加快python模块安装速度的操作
Mar 04 #Python
Pytorch实现WGAN用于动漫头像生成
Mar 04 #Python
基于PyInstaller各参数的含义说明
Mar 04 #Python
解决Pyinstaller打包软件失败的一个坑
Mar 04 #Python
selenium+python自动化78-autoit参数化与批量上传功能的实现
Mar 04 #Python
You might like
一个php作的文本留言本的例子(四)
2006/10/09 PHP
一个简单的自动发送邮件系统(二)
2006/10/09 PHP
使用PHP和HTML5 FormData实现无刷新文件上传教程
2014/09/06 PHP
phpmyadmin提示The mbstring extension is missing的解决方法
2014/12/17 PHP
php生成唯一的订单函数分享
2015/02/02 PHP
PHP+Apache+Mysql环境搭建教程
2016/08/01 PHP
php利用header函数下载各种文件
2016/08/24 PHP
jQuery在vs2008及js文件中的无智能提示的解决方法
2010/12/30 Javascript
javascript string字符串优化问题
2011/07/31 Javascript
jQuery选择器基础入门教程
2016/05/10 Javascript
详解jQuery简单的表单应用
2016/12/16 Javascript
在DWR中实现直接获取一个JAVA类的返回值的两种方法
2016/12/25 Javascript
整理关于Bootstrap列表组的慕课笔记
2017/03/29 Javascript
通过源码分析Vue的双向数据绑定详解
2017/09/24 Javascript
jQuery md5加密插件jQuery.md5.js用法示例
2018/08/24 jQuery
JS实现手写 forEach算法示例
2020/04/29 Javascript
js实现盒子拖拽动画效果
2020/08/09 Javascript
在vue中使用image-webpack-loader实例
2020/11/12 Javascript
Python通过正则表达式选取callback的方法
2015/07/18 Python
Python脚本实现虾米网签到功能
2016/04/12 Python
KMP算法精解及其Python版的代码示例
2016/06/01 Python
简单谈谈python中的语句和语法
2017/08/10 Python
python+matplotlib实现礼盒柱状图实例代码
2018/01/16 Python
python实现word 2007文档转换为pdf文件
2018/03/15 Python
解决python中使用plot画图,图不显示的问题
2018/07/04 Python
Python3爬虫之urllib携带cookie爬取网页的方法
2018/12/28 Python
python 安装教程之Pycharm安装及配置字体主题,换行,自动更新
2020/03/13 Python
Python使用xlrd实现读取合并单元格
2020/07/09 Python
CSS3 transform的skew属性值图文详解
2014/07/21 HTML / CSS
世界上最悠久的自行车制造商:Ribble Cycles
2017/03/18 全球购物
美国LOGO设计公司:The Logo Company
2018/07/16 全球购物
法国滑雪假期的专家:Ski Planet
2019/11/02 全球购物
初中生自我评价
2014/02/01 职场文书
积极贯彻学习两会精神总结
2014/03/17 职场文书
协议书范本
2014/04/23 职场文书
导游词之山东孔庙
2019/11/04 职场文书