Python分治法定义与应用实例详解


Posted in Python onJuly 28, 2017

本文实例讲述了Python分治法定义与应用。分享给大家供大家参考,具体如下:

分治法所能解决的问题一般具有以下几个特征:

1) 该问题的规模缩小到一定的程度就可以容易地解决
2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
3) 利用该问题分解出的子问题的解可以合并为该问题的解;
4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;

第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;

第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。

第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。

题目1. 给定一个顺序表,编写一个求出其最大值的分治算法。

# 基本子算法(子问题规模小于等于 2 时)
def get_max(max_list):
  return max(max_list) # 这里偷个懒!
# 分治法 版本一
def solve(init_list):
  n = len(init_list)
  if n <= 2: # 若问题规模小于等于 2,最终解决
    return get_max(init_list)
  # 分解(子问题规模为 2,最后一个可能为 1)
  temp_list=(init_list[i:i+2] for i in range(0, n, 2))
  # 分治,合并
  max_list = list(map(get_max, temp_list))
  # 递归(树)
  solve(max_list)
# 分治法 版本二
def solve2(init_list):
  n = len(init_list)
  if n <= 2: # 若问题规模小于等于 2,解决
    return get_max(init_list)
  # 分解(子问题规模为 n/2)
  left_list, right_list = init_list[:n//2], init_list[n//2:]
  # 递归(树),分治
  left_max, right_max = solve2(left_list), solve2(right_list)
  # 合并
  return get_max([left_max, right_max])
if __name__ == "__main__":
  # 测试数据
  test_list = [12,2,23,45,67,3,2,4,45,63,24,23]
  # 求最大值
  print(solve(test_list)) # 67
  print(solve2(test_list)) # 67

题目2. 给定一个顺序表,判断某个元素是否在其中。

# 子问题算法(子问题规模为 1)
def is_in_list(init_list, el):
  return [False, True][init_list[0] == el]
# 分治法
def solve(init_list, el):
  n = len(init_list)
  if n == 1: # 若问题规模等于 1,直接解决
    return is_in_list(init_list, el)
  # 分解(子问题规模为 n/2)
  left_list, right_list = init_list[:n//2], init_list[n//2:]
  # 递归(树),分治,合并
  res = solve(left_list, el) or solve(right_list, el)
  return res
if __name__ == "__main__":
  # 测试数据
  test_list = [12,2,23,45,67,3,2,4,45,63,24,23]
  # 查找
  print(solve2(test_list, 45)) # True
  print(solve2(test_list, 5)) # False

题目3. 找出一组序列中的第 k 小的元素,要求线性时间

# 划分(基于主元 pivot),注意:非就地划分
def partition(seq):
  pi = seq[0]              # 挑选主元
  lo = [x for x in seq[1:] if x <= pi] # 所有小的元素
  hi = [x for x in seq[1:] if x > pi]  # 所有大的元素
  return lo, pi, hi
# 查找第 k 小的元素
def select(seq, k):
  # 分解
  lo, pi, hi = partition(seq)
  m = len(lo)
  if m == k:
    return pi        # 解决!
  elif m < k:
    return select(hi, k-m-1) # 递归(树),分治
  else:
    return select(lo, k)   # 递归(树),分治
if __name__ == '__main__':
  seq = [3, 4, 1, 6, 3, 7, 9, 13, 93, 0, 100, 1, 2, 2, 3, 3, 2]
  print(select(seq, 3)) #2
  print(select(seq, 5)) #2

题目4. 快速排序

# 划分(基于主元 pivot),注意:非就地划分
def partition(seq):
  pi = seq[0]              # 挑选主元
  lo = [x for x in seq[1:] if x <= pi] # 所有小的元素
  hi = [x for x in seq[1:] if x > pi]  # 所有大的元素
  return lo, pi, hi
# 快速排序
def quicksort(seq):
  # 若问题规模小于等于1,解决
  if len(seq) <= 1: return seq
  # 分解
  lo, pi, hi = partition(seq)
  # 递归(树),分治,合并
  return quicksort(lo) + [pi] + quicksort(hi)
seq = [7, 5, 0, 6, 3, 4, 1, 9, 8, 2]
print(quicksort(seq)) #[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

题目5. 合并排序(二分排序)

# 合并排序
def mergesort(seq):
  # 分解(基于中点)
  mid = len(seq) // 2
  left_seq, right_seq = seq[:mid], seq[mid:]
  # 递归(树),分治
  if len(left_seq) > 1: left_seq = mergesort(left_seq)
  if len(right_seq) > 1: right_seq = mergesort(right_seq)
  # 合并
  res = []
  while left_seq and right_seq:     # 只要两者皆非空
    if left_seq[-1] >= right_seq[-1]: # 两者尾部较大者,弹出
      res.append(left_seq.pop())
    else:
      res.append(right_seq.pop())
  res.reverse()             # 倒序
  return (left_seq or right_seq) + res  # 前面加上剩下的非空的seq
seq = [7, 5, 0, 6, 3, 4, 1, 9, 8, 2]
print(mergesort(seq)) #[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

题目6. 汉诺塔

# 汉诺塔
def move(n, a, buffer, c):
  if n == 1:
    print(a,"->",c)
    #return
  else:
    # 递归(线性)
    move(n-1, a, c, buffer)
    move(1, a, buffer, c) # 或者:print(a,"->",c)
    move(n-1, buffer, a, c)
move(3, "a", "b", "c")

问题7. 爬楼梯

假设你正在爬楼梯,需要n步你才能到达顶部。但每次你只能爬一步或者两步,你能有多少种不同的方法爬到楼顶部?

# 爬楼梯
def climb(n=7):
  if n <= 2:
    return n
  return climb(n-1) + climb(n-2) # 等价于斐波那契数列!
print(climb(5)) # 8
print(climb(7)) # 21

问题8. 给定平面上n个点,找其中的一对点,使得在n个点的所有点对中,该点对的距离最小。(最近点对问题)

from math import sqrt
# 蛮力法
def solve(points):
  n = len(points)
  min_d = float("inf") # 最小距离:无穷大
  min_ps = None    # 最近点对
  for i in range(n-1):
    for j in range(i+1, n):
      d = sqrt((points[i][0] - points[j][0])**2 + (points[i][1] - points[j][1])**2) # 两点距离
      if d < min_d:
        min_d = d            # 修改最小距离
        min_ps = [points[i], points[j]] # 保存最近点对
  return min_ps
# 最接近点对(报错!)
def nearest_dot(seq):
  # 注意:seq事先已对x坐标排序
  n = len(seq)
  if n <= 2: return seq # 若问题规模等于 2,直接解决
  # 分解(子问题规模n/2)
  left, right = seq[0:n//2], seq[n//2:]
  print(left, right)
  mid_x = (left[-1][0] + right[0][0])/2.0
  # 递归,分治
  lmin = (left, nearest_dot(left))[len(left) > 2]  # 左侧最近点对
  rmin = (right, nearest_dot(right))[len(right) > 2] # 右侧最近点对
  # 合并
  dis_l = (float("inf"), get_distance(lmin))[len(lmin) > 1]
  dis_r = (float("inf"), get_distance(rmin))[len(rmin) > 1]
  d = min(dis_l, dis_r)  # 最近点对距离
  # 处理中线附近的带状区域(近似蛮力)
  left = list(filter(lambda p:mid_x - p[0] <= d, left))  #中间线左侧的距离<=d的点
  right = list(filter(lambda p:p[0] - mid_x <= d, right)) #中间线右侧的距离<=d的点
  mid_min = []
  for p in left:
    for q in right:
      if abs(p[0]-q[0])<=d and abs(p[1]-q[1]) <= d:   #如果右侧部分点在p点的(d,2d)之间
        td = get_distance((p,q))
        if td <= d:
          mid_min = [p,q]  # 记录p,q点对
          d = td      # 修改最小距离
  if mid_min:
    return mid_min
  elif dis_l>dis_r:
    return rmin
  else:
    return lmin
# 两点距离
def get_distance(min):
  return sqrt((min[0][0]-min[1][0])**2 + (min[0][1]-min[1][1])**2)
def divide_conquer(seq):
  seq.sort(key=lambda x:x[0])
  res = nearest_dot(seq)
  return res
# 测试
seq=[(0,1),(3,2),(4,3),(5,1),(1,2),(2,1),(6,2),(7,2),(8,3),(4,5),(9,0),(6,4)]
print(solve(seq)) # [(6, 2), (7, 2)]
#print(divide_conquer(seq)) # [(6, 2), (7, 2)]

问题9. 从数组 seq 中找出和为 s 的数值组合,有多少种可能

'''
求一个算法:N个数,用其中M个任意组合相加等于一个已知数X。得出这M个数是哪些数。
比如:
seq = [1, 2, 3, 4, 5, 6, 7, 8, 9]
s = 14 # 和
全部可能的数字组合有:
5+9, 6+8
1+4+9, 1+5+8, 1+6+7, 2+3+9, 2+4+8, 2+5+7, 3+4+7, 3+5+6
1+2+5+6, 1+3+4+6, 1+2+4+7, 1+2+3+8, 2+3+4+5
共计15种
'''
# 版本一(纯计数)
def find(seq, s):
  n = len(seq)
  if n==1:
    return [0, 1][seq[0]==s]
  if seq[0]==s:
    return 1 + find(seq[1:], s)
  else:
    return find(seq[1:], s-seq[0]) + find(seq[1:], s)
# 测试
seq = [1, 2, 3, 4, 5, 6, 7, 8, 9]
s = 14 # 和
print(find(seq, s)) # 15
seq = [11,23,6,31,8,9,15,20,24,14]
s = 40 # 和
print(find(seq, s)) #8
# 版本二 (打印)
def find2(seq, s, tmp=''):
  if len(seq)==0:  # 终止条件
    return
  if seq[0] == s:        # 找到一种,则
    print(tmp + str(seq[0])) # 打印
  find2(seq[1:], s, tmp)               # 尾递归 ---不含 seq[0] 的情况
  find2(seq[1:], s-seq[0], str(seq[0]) + '+' + tmp)  # 尾递归 ---含 seq[0] 的情况
# 测试
seq = [1, 2, 3, 4, 5, 6, 7, 8, 9]
s = 14 # 和
find2(seq, s)
print()
seq = [11,23,6,31,8,9,15,20,24,14]
s = 40 # 和
find2(seq, s)

更多关于Python相关内容可查看本站专题:《Python数据结构与算法教程》、《Python Socket编程技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
python持久性管理pickle模块详细介绍
Feb 18 Python
常见的在Python中实现单例模式的三种方法
Apr 08 Python
Python实现命令行通讯录实例教程
Aug 18 Python
pandas的object对象转时间对象的方法
Apr 11 Python
详解python3中tkinter知识点
Jun 21 Python
解决python中使用plot画图,图不显示的问题
Jul 04 Python
Python 正则表达式匹配字符串中的http链接方法
Dec 25 Python
Python静态类型检查新工具之pyright 使用指南
Apr 26 Python
python-pyinstaller、打包后获取路径的实例
Jun 10 Python
python字符串Intern机制详解
Jul 01 Python
python实现最速下降法
Mar 24 Python
利用Python实现最小二乘法与梯度下降算法
Feb 21 Python
Python更新数据库脚本两种方法及对比介绍
Jul 27 #Python
Python判断文件或文件夹是否存在的三种方法
Jul 27 #Python
Python开发SQLite3数据库相关操作详解【连接,查询,插入,更新,删除,关闭等】
Jul 27 #Python
Python基于tkinter模块实现的改名小工具示例
Jul 27 #Python
python django 增删改查操作 数据库Mysql
Jul 27 #Python
Python中Selenium模拟JQuery滑动解锁实例
Jul 26 #Python
Python列表和元组的定义与使用操作示例
Jul 26 #Python
You might like
用PHP制作静态网站的模板框架(四)
2006/10/09 PHP
PHP使用SOAP调用.net的WebService数据
2013/11/12 PHP
PHP调用C#开发的dll类库方法
2014/07/28 PHP
PHP基于yii框架实现生成ICO图标
2015/11/13 PHP
PHP代码维护,重构变困难的4种原因分析
2016/01/25 PHP
Laravel中批量赋值Mass-Assignment的真正含义详解
2017/09/29 PHP
JQuery SELECT单选模拟jQuery.select.js
2009/11/12 Javascript
Js 随机数产生6位数字
2010/05/13 Javascript
JS+DIV实现鼠标划过切换层效果的实例代码
2013/11/26 Javascript
jquery库文件略庞大用纯js替换jquery的方法
2014/08/12 Javascript
node.js中的fs.appendFileSync方法使用说明
2014/12/17 Javascript
javascript简单判断输入内容是否合法的方法
2016/05/11 Javascript
canvas轨迹回放功能实现
2017/12/20 Javascript
Node.js命令行/批处理中如何更改Linux用户密码浅析
2018/07/22 Javascript
React 条件渲染最佳实践小结(7种)
2020/09/27 Javascript
解决vue-loader加载不上的问题
2020/10/21 Javascript
[55:42]VG vs VGJ.T 2018国际邀请赛淘汰赛BO1 8.21
2018/08/22 DOTA
python3模拟百度登录并实现百度贴吧签到示例分享(百度贴吧自动签到)
2014/02/24 Python
Python获取远程文件大小的函数代码分享
2014/05/13 Python
python基于隐马尔可夫模型实现中文拼音输入
2016/04/01 Python
Python编程中实现迭代器的一些技巧小结
2016/06/21 Python
Python和Java的语法对比分析语法简洁上python的确完美胜出
2019/05/10 Python
Django中使用CORS实现跨域请求过程解析
2019/08/05 Python
CSS3制作3D立方体loading特效
2020/11/09 HTML / CSS
canvas绘制圆角头像的实现方法
2019/01/17 HTML / CSS
凯特·丝蓓英国官网:Kate Spade英国
2016/11/07 全球购物
经济实惠的豪华背包和行李袋:Packs Project
2018/10/17 全球购物
世界上最伟大的马产品:Equiderma
2020/01/07 全球购物
销售员自我评价怎么写
2013/09/19 职场文书
基层党组织公开承诺书
2014/03/28 职场文书
社团活动总结书
2014/06/27 职场文书
教师党的群众路线教育实践活动学习笔记
2014/11/05 职场文书
奔腾年代观后感
2015/06/09 职场文书
中学音乐课教学反思
2016/02/18 职场文书
求职自荐信该如何书写?
2019/06/24 职场文书
Redis分布式锁Redlock的实现
2021/08/07 Redis