Python分治法定义与应用实例详解


Posted in Python onJuly 28, 2017

本文实例讲述了Python分治法定义与应用。分享给大家供大家参考,具体如下:

分治法所能解决的问题一般具有以下几个特征:

1) 该问题的规模缩小到一定的程度就可以容易地解决
2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
3) 利用该问题分解出的子问题的解可以合并为该问题的解;
4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;

第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;

第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。

第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。

题目1. 给定一个顺序表,编写一个求出其最大值的分治算法。

# 基本子算法(子问题规模小于等于 2 时)
def get_max(max_list):
  return max(max_list) # 这里偷个懒!
# 分治法 版本一
def solve(init_list):
  n = len(init_list)
  if n <= 2: # 若问题规模小于等于 2,最终解决
    return get_max(init_list)
  # 分解(子问题规模为 2,最后一个可能为 1)
  temp_list=(init_list[i:i+2] for i in range(0, n, 2))
  # 分治,合并
  max_list = list(map(get_max, temp_list))
  # 递归(树)
  solve(max_list)
# 分治法 版本二
def solve2(init_list):
  n = len(init_list)
  if n <= 2: # 若问题规模小于等于 2,解决
    return get_max(init_list)
  # 分解(子问题规模为 n/2)
  left_list, right_list = init_list[:n//2], init_list[n//2:]
  # 递归(树),分治
  left_max, right_max = solve2(left_list), solve2(right_list)
  # 合并
  return get_max([left_max, right_max])
if __name__ == "__main__":
  # 测试数据
  test_list = [12,2,23,45,67,3,2,4,45,63,24,23]
  # 求最大值
  print(solve(test_list)) # 67
  print(solve2(test_list)) # 67

题目2. 给定一个顺序表,判断某个元素是否在其中。

# 子问题算法(子问题规模为 1)
def is_in_list(init_list, el):
  return [False, True][init_list[0] == el]
# 分治法
def solve(init_list, el):
  n = len(init_list)
  if n == 1: # 若问题规模等于 1,直接解决
    return is_in_list(init_list, el)
  # 分解(子问题规模为 n/2)
  left_list, right_list = init_list[:n//2], init_list[n//2:]
  # 递归(树),分治,合并
  res = solve(left_list, el) or solve(right_list, el)
  return res
if __name__ == "__main__":
  # 测试数据
  test_list = [12,2,23,45,67,3,2,4,45,63,24,23]
  # 查找
  print(solve2(test_list, 45)) # True
  print(solve2(test_list, 5)) # False

题目3. 找出一组序列中的第 k 小的元素,要求线性时间

# 划分(基于主元 pivot),注意:非就地划分
def partition(seq):
  pi = seq[0]              # 挑选主元
  lo = [x for x in seq[1:] if x <= pi] # 所有小的元素
  hi = [x for x in seq[1:] if x > pi]  # 所有大的元素
  return lo, pi, hi
# 查找第 k 小的元素
def select(seq, k):
  # 分解
  lo, pi, hi = partition(seq)
  m = len(lo)
  if m == k:
    return pi        # 解决!
  elif m < k:
    return select(hi, k-m-1) # 递归(树),分治
  else:
    return select(lo, k)   # 递归(树),分治
if __name__ == '__main__':
  seq = [3, 4, 1, 6, 3, 7, 9, 13, 93, 0, 100, 1, 2, 2, 3, 3, 2]
  print(select(seq, 3)) #2
  print(select(seq, 5)) #2

题目4. 快速排序

# 划分(基于主元 pivot),注意:非就地划分
def partition(seq):
  pi = seq[0]              # 挑选主元
  lo = [x for x in seq[1:] if x <= pi] # 所有小的元素
  hi = [x for x in seq[1:] if x > pi]  # 所有大的元素
  return lo, pi, hi
# 快速排序
def quicksort(seq):
  # 若问题规模小于等于1,解决
  if len(seq) <= 1: return seq
  # 分解
  lo, pi, hi = partition(seq)
  # 递归(树),分治,合并
  return quicksort(lo) + [pi] + quicksort(hi)
seq = [7, 5, 0, 6, 3, 4, 1, 9, 8, 2]
print(quicksort(seq)) #[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

题目5. 合并排序(二分排序)

# 合并排序
def mergesort(seq):
  # 分解(基于中点)
  mid = len(seq) // 2
  left_seq, right_seq = seq[:mid], seq[mid:]
  # 递归(树),分治
  if len(left_seq) > 1: left_seq = mergesort(left_seq)
  if len(right_seq) > 1: right_seq = mergesort(right_seq)
  # 合并
  res = []
  while left_seq and right_seq:     # 只要两者皆非空
    if left_seq[-1] >= right_seq[-1]: # 两者尾部较大者,弹出
      res.append(left_seq.pop())
    else:
      res.append(right_seq.pop())
  res.reverse()             # 倒序
  return (left_seq or right_seq) + res  # 前面加上剩下的非空的seq
seq = [7, 5, 0, 6, 3, 4, 1, 9, 8, 2]
print(mergesort(seq)) #[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

题目6. 汉诺塔

# 汉诺塔
def move(n, a, buffer, c):
  if n == 1:
    print(a,"->",c)
    #return
  else:
    # 递归(线性)
    move(n-1, a, c, buffer)
    move(1, a, buffer, c) # 或者:print(a,"->",c)
    move(n-1, buffer, a, c)
move(3, "a", "b", "c")

问题7. 爬楼梯

假设你正在爬楼梯,需要n步你才能到达顶部。但每次你只能爬一步或者两步,你能有多少种不同的方法爬到楼顶部?

# 爬楼梯
def climb(n=7):
  if n <= 2:
    return n
  return climb(n-1) + climb(n-2) # 等价于斐波那契数列!
print(climb(5)) # 8
print(climb(7)) # 21

问题8. 给定平面上n个点,找其中的一对点,使得在n个点的所有点对中,该点对的距离最小。(最近点对问题)

from math import sqrt
# 蛮力法
def solve(points):
  n = len(points)
  min_d = float("inf") # 最小距离:无穷大
  min_ps = None    # 最近点对
  for i in range(n-1):
    for j in range(i+1, n):
      d = sqrt((points[i][0] - points[j][0])**2 + (points[i][1] - points[j][1])**2) # 两点距离
      if d < min_d:
        min_d = d            # 修改最小距离
        min_ps = [points[i], points[j]] # 保存最近点对
  return min_ps
# 最接近点对(报错!)
def nearest_dot(seq):
  # 注意:seq事先已对x坐标排序
  n = len(seq)
  if n <= 2: return seq # 若问题规模等于 2,直接解决
  # 分解(子问题规模n/2)
  left, right = seq[0:n//2], seq[n//2:]
  print(left, right)
  mid_x = (left[-1][0] + right[0][0])/2.0
  # 递归,分治
  lmin = (left, nearest_dot(left))[len(left) > 2]  # 左侧最近点对
  rmin = (right, nearest_dot(right))[len(right) > 2] # 右侧最近点对
  # 合并
  dis_l = (float("inf"), get_distance(lmin))[len(lmin) > 1]
  dis_r = (float("inf"), get_distance(rmin))[len(rmin) > 1]
  d = min(dis_l, dis_r)  # 最近点对距离
  # 处理中线附近的带状区域(近似蛮力)
  left = list(filter(lambda p:mid_x - p[0] <= d, left))  #中间线左侧的距离<=d的点
  right = list(filter(lambda p:p[0] - mid_x <= d, right)) #中间线右侧的距离<=d的点
  mid_min = []
  for p in left:
    for q in right:
      if abs(p[0]-q[0])<=d and abs(p[1]-q[1]) <= d:   #如果右侧部分点在p点的(d,2d)之间
        td = get_distance((p,q))
        if td <= d:
          mid_min = [p,q]  # 记录p,q点对
          d = td      # 修改最小距离
  if mid_min:
    return mid_min
  elif dis_l>dis_r:
    return rmin
  else:
    return lmin
# 两点距离
def get_distance(min):
  return sqrt((min[0][0]-min[1][0])**2 + (min[0][1]-min[1][1])**2)
def divide_conquer(seq):
  seq.sort(key=lambda x:x[0])
  res = nearest_dot(seq)
  return res
# 测试
seq=[(0,1),(3,2),(4,3),(5,1),(1,2),(2,1),(6,2),(7,2),(8,3),(4,5),(9,0),(6,4)]
print(solve(seq)) # [(6, 2), (7, 2)]
#print(divide_conquer(seq)) # [(6, 2), (7, 2)]

问题9. 从数组 seq 中找出和为 s 的数值组合,有多少种可能

'''
求一个算法:N个数,用其中M个任意组合相加等于一个已知数X。得出这M个数是哪些数。
比如:
seq = [1, 2, 3, 4, 5, 6, 7, 8, 9]
s = 14 # 和
全部可能的数字组合有:
5+9, 6+8
1+4+9, 1+5+8, 1+6+7, 2+3+9, 2+4+8, 2+5+7, 3+4+7, 3+5+6
1+2+5+6, 1+3+4+6, 1+2+4+7, 1+2+3+8, 2+3+4+5
共计15种
'''
# 版本一(纯计数)
def find(seq, s):
  n = len(seq)
  if n==1:
    return [0, 1][seq[0]==s]
  if seq[0]==s:
    return 1 + find(seq[1:], s)
  else:
    return find(seq[1:], s-seq[0]) + find(seq[1:], s)
# 测试
seq = [1, 2, 3, 4, 5, 6, 7, 8, 9]
s = 14 # 和
print(find(seq, s)) # 15
seq = [11,23,6,31,8,9,15,20,24,14]
s = 40 # 和
print(find(seq, s)) #8
# 版本二 (打印)
def find2(seq, s, tmp=''):
  if len(seq)==0:  # 终止条件
    return
  if seq[0] == s:        # 找到一种,则
    print(tmp + str(seq[0])) # 打印
  find2(seq[1:], s, tmp)               # 尾递归 ---不含 seq[0] 的情况
  find2(seq[1:], s-seq[0], str(seq[0]) + '+' + tmp)  # 尾递归 ---含 seq[0] 的情况
# 测试
seq = [1, 2, 3, 4, 5, 6, 7, 8, 9]
s = 14 # 和
find2(seq, s)
print()
seq = [11,23,6,31,8,9,15,20,24,14]
s = 40 # 和
find2(seq, s)

更多关于Python相关内容可查看本站专题:《Python数据结构与算法教程》、《Python Socket编程技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
浅析Python中的序列化存储的方法
Apr 28 Python
python创建关联数组(字典)的方法
May 04 Python
简要讲解Python编程中线程的创建与锁的使用
Feb 28 Python
python模块简介之有序字典(OrderedDict)
Dec 01 Python
python 字符串转列表 list 出现\ufeff的解决方法
Jun 22 Python
python 通过xml获取测试节点和属性的实例
Mar 31 Python
Python实现绘制双柱状图并显示数值功能示例
Jun 23 Python
使用PYTHON解析Wireshark的PCAP文件方法
Jul 23 Python
JupyterNotebook设置Python环境的方法步骤
Dec 03 Python
如何在django中添加日志功能
Feb 06 Python
python使用自定义钉钉机器人的示例代码
Jun 24 Python
pytorch查看网络参数显存占用量等操作
May 12 Python
Python更新数据库脚本两种方法及对比介绍
Jul 27 #Python
Python判断文件或文件夹是否存在的三种方法
Jul 27 #Python
Python开发SQLite3数据库相关操作详解【连接,查询,插入,更新,删除,关闭等】
Jul 27 #Python
Python基于tkinter模块实现的改名小工具示例
Jul 27 #Python
python django 增删改查操作 数据库Mysql
Jul 27 #Python
Python中Selenium模拟JQuery滑动解锁实例
Jul 26 #Python
Python列表和元组的定义与使用操作示例
Jul 26 #Python
You might like
php实现从ftp服务器上下载文件树到本地电脑的程序
2009/02/10 PHP
CodeIgniter使用phpcms模板引擎
2013/11/12 PHP
PHP请求Socket接口测试实例
2016/08/12 PHP
Laravel框架实现超简单的分页效果示例
2019/02/08 PHP
javascript显示隐藏层比较不错的方法分析
2008/09/30 Javascript
Mootools 1.2教程 Fx.Tween的使用
2009/09/15 Javascript
jquery 页面全选框实践代码
2010/04/02 Javascript
JavaScript Math.ceil() 函数使用介绍
2013/12/11 Javascript
推荐一个自己用的封装好的javascript插件
2015/01/29 Javascript
js实现仿QQ秀换装效果的方法
2015/03/04 Javascript
js中 javascript:void(0) 用法详解
2015/08/11 Javascript
通过正则表达式获取url中参数的简单实现
2016/06/07 Javascript
微信小程序 小程序制作及动画(animation样式)详解
2017/01/06 Javascript
JS 中使用Promise 实现红绿灯实例代码(demo)
2017/10/20 Javascript
VUE2.0+Element-UI+Echarts封装的组件实例
2018/03/02 Javascript
NodeJS搭建HTTP服务器的实现步骤
2018/10/12 NodeJs
微信小程序中悬浮窗功能的实现代码
2019/08/02 Javascript
JS中作用域以及变量范围分析
2020/07/18 Javascript
wxPython使用系统剪切板的方法
2015/06/16 Python
Python连接PostgreSQL数据库的方法
2016/11/28 Python
浅谈python装饰器探究与参数的领取
2017/12/01 Python
python实现beta分布概率密度函数的方法
2019/07/08 Python
解决Keras 与 Tensorflow 版本之间的兼容性问题
2020/02/07 Python
python实现将字符串中的数字提取出来然后求和
2020/04/02 Python
PyCharm 2020.2 安装详细教程
2020/09/25 Python
Python try except finally资源回收的实现
2021/01/25 Python
python脚本使用阿里云slb对恶意攻击进行封堵的实现
2021/02/04 Python
惠普新加坡官方商店:HP Singapore
2020/04/17 全球购物
提高EJB性能都有哪些技巧
2012/03/25 面试题
商场经理竞聘演讲稿
2014/01/01 职场文书
音乐节策划方案
2014/06/09 职场文书
新闻传播专业求职信
2014/07/22 职场文书
离婚协议书的书写要求
2014/09/17 职场文书
2015年终个人政治思想工作总结
2015/11/24 职场文书
redis requires ruby version2.2.2的解决方案
2021/07/15 Redis
分享几种python 变量合并方法
2022/03/20 Python